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Upper Bound on the WR Mass in Automatically R-Conserving Supersymmetric Models
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We show that in automatically R-conserving minimal supersymmetric (SUSY) left-right symmetric
models there is a theoretical upper limit on the mass of the right-handed WR boson given by
M~, ~ gMstIsv/f, where Msusv is the scale of SUSY breaking, g the weak gauge coupling, and

f the Yukawa coupling responsible for generating the right-handed neutrino masses. If M~, violates
the above bound, the ground state of the theory breaks electromagnetism. The only way to avoid this
bound while keeping the theory automatically R conserving is to expand the theory to include very
specific kinds of additional multiplets.
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There are two interesting extensions of the standard
model which are currently the focus of intensive investiga-
tion: the minimal supersymmetric standard model (MSSM)
[1] and the left-right symmetric model based on the gauge
group SU(2)t X SU(2)~ X U(1)~ t. X SU(3), [2]. The
MSSM extension can resolve several important unan-
swered questions of the standard model: (i) It explains the
stability of the electroweak symmetry breaking scale un-
der radiative corrections from new physics at higher scales
such as those due to grand unification or gravity; (ii) local
supersymmetry breaking via renormalization group equa-
tions can provide a perturbative origin for the scale of
electroweak symmetry breaking; and (iii) it may provide
a particle physics candidate for the cold dark matter of the
Universe. It also connects the standard model with more
fundamental theories such as superstrings. On the other
hand, the left-right symmetric (LRS) models (i) provide a
more satisfactory framework for understanding the origin
of parity violation; (ii) restore quark-lepton symmetry to
weak interactions; and (iii) if the neutrinos have a mass,
the LRS models provide the simplest way to understand
the smallness of the neutrino mass via the seesaw mecha-
nism [3].

The next important question is the scale at which
these new symmetries manifest themselves. As far as
supersymmetry is concerned, the general belief is that its
scale MsUsY is below or around a TeV if it has to have
the usefulness expected of it. On the other hand, as far
as the scale of left-right symmetry (denoted by Mw„) is
concerned, in general, it could be anywhere between a
few hundred GeV [4] to the grand unified theory scale.
The main result of this Letter is that within the theoretical
framework that combines both supersymmetry and left-
right symmetry there exists a large class of attractive
models, where one can derive an upper bound on M~,
related to MsUs Y-

In order to introduce the special class of models we
discuss, we note that despite its many attractive features,
the MSSM extension has a major drawback. While

the standard model provides a natural understanding of
why baryon (B) and lepton (L) number conservations are
obeyed to such a high degree of precision in nature, in
MSSM both B and L violation can occur with maximal
strength via the so called R-parity violating terms [5].
There is also no cold dark matter (CDM) candidate in
the presence of these terms, and the usual practice is to
impose an R-parity symmetry [defined as (—1)s~+ +2s]

on the MSSM to avoid both these problems. There is,
however, a less ad hoc way to solve the problem of
catastrophic B violation as has been noted earlier [6] by
extending the gauge group of the supersymmetric model
to make it left-right symmetric (to be called SUSYLR)
and considering the class of models which implement
the seesaw mechanism for small neutrino masses. Such
models lead to automatic R-parity conservation prior to
symmetry breaking and thus have no problem with B or L
violation at all. This model has been studied in several
recent papers [7—9). Specifically, in our earlier paper
[7] we pointed out that in the minimal version of this
model the requirement of electric charge conservation and
low energy parity violation implies that R parity must be
spontaneously broken [10). Therefore, while this model
still does not have a CDM candidate, it cures one major
drawback of the MSSM; i.e., the baryon number remains
an exact symmetry of the model. The model, however,
leads to small L-violating terms, which are suppressed and
could be tested experimentally by searches for L violation.

In this Letter we report another interesting consequence
of this class of minimal SUSYLR models, which is that
the mass of the right-handed WR boson M~, has an
upper limit related to the SUSY breaking scale (i.e.,

M~, ~ gMsUsY/f), where g is the weak gauge coupling
and f is the Yukawa couplings of right-handed neutrinos.
The Yukawa coupling f could a priori be of order 1, in
which case one gets the most stringent bound on M~, to
be less than a TeV (since MsUsv is expected to be in the
TeV range). These results follow from the requirements
of electric charge conservation and low energy parity
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violation by the ground state of the theory. The WR in this
class of models (with f = 1) then becomes detectable in

high energy colliding machines such as the CERN Large
Hadron Collider.

It is worth pointing out that, while there exist convinc-
ing arguments based on analysis of the low energy weak
processes which give lower bounds on M~, in the range
of a few hundred GeV, to the best of our knowledge no
upper bound on M~, exists. We further show that the
only way to avoid this bound while maintaining the fea-
ture of automatic R-parity conservation is to enrich the
minimal model by adding a B —I. = 0 triplet.

Since our arguments suggest that M~, in this class of
models is likely to be in the TeV range, we briefly comment
on the existing lower bounds. For a heavy Majorana vR,
the most stringent lower bounds come from the analysis of
the KI —Ks mass difference [11]and neutrinoless double
beta decay [12], which imply Miv, ~ 1 —2 TeV. These
bounds are, however, dependent on assumptions about
hadronic matrix elements and nuclear physics details,
respectively. Less model dependent limits come from the
recent analyses of collider data [13],which provide a lower
limit of about 460 GeV for heavy Majorana vR. Since
the value of MsUsy is expected to be in the TeV range
and the value of the coupling parameter f could be less
than 1, the above mentioned lower bounds do not rule out
the SUSYLR model but reduce the domain of its validity
considerably.

We start our discussion by giving the mat-
ter content of the minimal SUSYLR model:
Q(2, 1, 3); Q'(1, 2, —3); L(2, 1, —1); L'(1, 2, +1) de-
note the quarks and leptons and 5(3, 1, +2);
5'(I, 3, —2); A(3, 1, —2); Ac(I, 3, +2); 4(2, 2, 0) denote
the Higgs fields [where the numbers in the parentheses
represent the representations of the fields under the gauge
group SU(2)1. X SU(2)~ X U(1)ii 1.]. Since the weak
interaction scale M~ is smaller than MsUs~ and MR, we
will initially ignore effects of the order M~.

For the sake of completeness, we start by presenting
the argument of Ref. [7] regarding the inevitability of
spontaneous R-parity breaking in the SUSYLR models
under consideration if they have to provide a realistic
description of nature. Let us write down the relevant part
of the superpotential (W). We have included a gauge
singlet field (o.) to make the discussion as general as
possible [14]:

w =;f(L".2~ I. ) + M Tr(~ ~')
+ h Tr(h'X )o- + F(cr),

where F(o.) is any analytic function with linear, quadratic,
or cubic terms in o .

The Higgs potential consists of a sum of the F and D
terms (Vz and Vo, respectively) and the soft symmetry
breaking terms [we have dropped all terms involving
5 and b, and 4 since their vacuum expectation valves

(vev's) are at most of order Mtv and will therefore not
play any role in our discussion]:

where

V = VF + Vz) + Vg, (2)

AFv, =
l 2ifL"~26'

l
+ h. Tr(a'a ) +

+Tr ifL'L' r2+M4 + h 4 o

+ TrlMA' + h 5'crl, (3)

V~ = + —g l
L't7 L'+ Tr(25' tr 5'+ 2h w 5 ) l

m
!2

+ g
I
L'L' —2Tr(~'~' —5 l~ ) 12 (4)

8

2Lcf I c + M2 Trgctgc

+ M2 Trh 5 + Ah Tr(A'4 )o.

+ (M' Trh'5 + ifvL' ~26'L'+ H.c.) + F)(o.) .

All the fields in the above equations represent the
scalar field of the corresponding superfield. This model
will yield the MSSM for scales p, « (5'), (5 ); if
(5'), (6 ) 4 0. R parity will be conserved or broken at
this stage, depending on whether (v') is zero or not. We
will now show that if (v') = 0, either (5') = 0 or if it is
nonzero, then the absolute global minimum of V violates
electric charge (Q, ) conservation.

Note first that since in general Mi 4 M2, (5') 4 (5 ).
In what follows, we will denote the vev's of 5' and b,

generically by vR, the right-handed symmetry breaking
scale. Consider now the following two vacua: (a) Q,
conserving vev

(~') = d(, d(c o

(b) Q, breaking vev

(~') = c), (& ) = ~() II) (7)

It is easy to see, using properties of the Pauli matrices,
that if (v') = 0, then the value of the positive definite
V~ for the Q, breaking vev is lower than VD for the

Q,~ conserving vev since Trh' ~ 5' 4 0 in case (a),
whereas it vanishes for case (b). The value of all other
terms of V are the same for both cases. When R parity is
broken by giving a nonzero vev (v') —= l', there are new
contributions to the V, and one can adjust parameters such
as f to make the Q, breaking vev have a higher energy
than the Q, conserving one. It is, however, important
that I' be at least of order MsUs~ or the right-handed
scale vR (whichever is lower) to achieve this goal (note
that d —d —vR).
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Upper bound on vR.—Let us now proceed to the
discussion of this paper. We will now assume that

fvR» MsUsY (8)
and hence to the lowest order in this approximation, we
can neglect the soft supersymmetry breaking terms V&.

Neglecting these terms, the minima are SUSY preserving,
and they satisfy the condition V = 0. This requires that

L'=0, M+A sr=0,

h Bo'

cos0 i
0&X &= d(,',sin0

and

(10)

It is interesting to note that at this stage L' = 0
follows from the SUSY preserving condition V = 0 and
is not put in by hand. In other words, to the extent
that supersymmetry is not broken, R parity cannot be
spontaneously broken.

The other more important thing to note is that the
solutions to Eq. (9) give rise to degenerate minima. The
solutions are

(5') = d(

(~) = —M/h. , (L') = 0,

with

d = d = BF—/h Bo. . (12)

In Eq. (10), 0 can be any angle, and this corresponds to
the degeneracy of the vacua.

In order to lift the degeneracy, and see which
of the above vacua is the true minimum, we turn
on the most general soft supersymmetry breaking
terms (Vs) as a perturbation. Vs is given by Eq. (5)
where m~, v, M~, M2, M' are all at most of the order
MsUsY && vR.

Note that as already mentioned, since M~ ~ MsUs~,
we will continue to set (4) = (L) = M~ = 0 as we turn
on Vs as a perturbation. A priori, (L') can be order
MsUs~. However, we will show in the following that this
cannot be the case, and that in fact L' = 0 to the first
order in MsUsv.

To see if L' picks up a vev, let us use Eq. (10)
with 0 = 0 and d —d —vR, and examine the L' terms.
Substituting for 5', 5, and i' into Eqs. (3)—(5), we have
the following quadratic terms in l':

I2ifL"rz~'I'
fvL' rzA'L'

/2

I
L'L' + 2Tr(X'X' —X'fS') I'

8

—
I fl v&&', TrlifL'L"r2 + (M + h rr)a'I' —fv~MsUsYl

—fMsUSY vRi /2 2 c t c 2 /2

—(g' or g )MsUsvl (13)

vR ~ MsUsY/f, (15)

which implies a hound on M~, gMsUsY/f.
Note that if fvg ~ MsUsY, then the first two terms in

Eq. (14) would he of the same order and could lead to
a net negative value for the (mass) term for the field

It is important to note that there are no linear or cubic
terms in L', and the rest are all quartic terms. Thus
assuming inequality (8), we have the following relation
from the above equations:

Vl-. =
I fv, I' ll'I' ~ p, 'll'I' + co~s~ x li'I',

where p, denotes masses of the order of MsUs~ or2 2

fv~MsUsY. By the assumption of inequality (8), it
follows that p, is small compared to the positive definite
leading term in Eq. (14). Therefore, at the minimum,
l' = 0 or L' = 0. This means that there cannot be
any spontaneous R-parity violation if inequality (8) is
true. But from our result given earlier, this means
that electromagnetism is spontaneously broken. Hence
inequality (8) must be false, and we have the bound

l', and thereby give a nonzero vev for I' (causing R-
parity violation and therefore a Q, conserving and parity
violating low energy theory).

A way of understanding the role played by Vz in

preferring the electromagnetism violating vacuum (if there
is no R-parity violation) is to note that, because in general
Mt 4 M2 in Eq. (5), the magnitude of the vev's of
6' and 5 are slightly different. Now the degenerate
vacua of Eq. (10) will be slightly split. Substituting
Eqs. (10) and (12) into Eqs. (3)—(5), it is easy to see
that the minimum value is obtained for 0 = 45 since
d 4 d. This vacuum violates electromagnetism (the
electromagnetism conserving case 6I = 0 is not even a
local minimum and is in fact a saddle point).

The upper bound in Eq. (15) implies that vz MsUsY
if the Yukawa couplings in the right-handed sector are of
the order 1. This is the main result of our paper. Since the
bound on vR depends on the unknown Yukawa coupling
f, it gets weaker as f becomes much smaller than 1.

So far we have ignored M~ and hence have not
considered the effect of the vev of the bidoublet. We
will now show that turning on (4) —Mq and (L) ~ M~
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does not change any of our conclusions. Because of
terms such as IhL rzttir2 + 2ifL' r2b, 'I, Eq. (14) will
be modified to

VL, , = fMivv, l' + Ifv, I' ll'I' p, 'll'I'

+ const x Il'I . (16)
Note that in this case the effective (mass) term for the l'
is still positive. At the minimum, l —Mvr(Mvr/f vR) «
Miv if fvR ) MsUsv. This value of (l') is much
too small to stabilize the electromagnetism conserving
vacuum, and therefore the bound fvtt ( MsUsv holds
even after electroweak effects are taken into account.
In fact, the splitting in the magnitudes of 5' and 5
caused by this tiny nonzero l' causes the theory to prefer
the electromagnetism violating vacuum if the bound is
violated.

Let us now discuss what one has to do to avoid the
above bound on M~, while at the same time maintaining
automatic R-parity conservation in the theory both before
and after symmetry breaking. The simplest way is to
enrich the minimal models by adding a B —I. = 0 triplet
denoted by cu. The relevant part of the superpotential is
given by

W = MTr(A'5 ) + a Tr(A'coA )
+ c Trio' + h Tr(b, '6')o-

+ h Trio o + F(o). (17)
Using SU(2)R invariance, we can always choose a basis

such that ~ acquires the electromagnetism preserving
vacuum expectation value of the form

(~&=~ 1 0
(18)0 —1)

C

By substituting vacuum expectation values for 5' and 5
from Eq. (10) into Eq. (17) and using Eq. (18), we see
that the superpotential W has a nontrivial 0 dependence
due to the trilinear terms involving the three triplet fields.
Since the soft-supersymmetry breaking terms will have
exactly the same form as the superpotential, the value
of the Higgs potential will have nontrivial 0 dependence
even if R parity is not spontaneously broken. Thus there
is no problem of degenerate vacua, and these trilinear
couplings can have signs so that the electromagnetism
conserving vacuum with 0 = 0 is an absolute minimum
even without R-parity violation.

In conclusion, we have studied the low energy impli-
cations of the class of SUSY left-right models that lead
to automatic R-parity conservation. The most important
result of our investigation is that in the minimal version
of this model, there is an upper bound on M~„which,
for allowed values of parameters in the theory, can be as
small as a TeV, making it possible to rule out the model
in this parameter range.
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