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We propose a geometric theory of flavor based on the discrete group (S3), in the context of the
minimal supersymmetric standard model. The group treats three objects symmetrically, while making
fundamental distinctions between the generations. The top quark is the only heavy quark in the
symmetry limit, and the first and second generation squarks are degenerate. The hierarchical nature of
Yukawa matrices is a consequence of a sequential breaking of (S&) .
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The smallness of the electroweak symmetry breaking
scale and the hierarchical nature of the Yukawa matrices
provide two of the most important problems of particle
physics. Weak scale supersymmetry may well play a cru-
cial role in the former, since it is the only symmetry that
can protect the mass of an elementary scalar. However,
weak scale supersymmetry widens the scope of flavor
physics: any supersymmetric extension of the standard
model possesses eleven flavor matrices rather than the
three Yukawa matrices of the standard model. The ad-
ditional eight flavor matrices all involve couplings to
squarks and sleptons, and have therefore not been di-
rectly probed experimentally. However, rare processes
such as the Kl-K~ mass difference provide experimen-
tal constraints on these flavor mixing matrices [1]. Hence
the problem of flavor symmetries is greatly affected by
the inclusion of weak scale supersymmetry.

It is frequently remarked that the most striking feature
of the observed flavor physics is that the top quark is the
only fermion with a mass of order the weak scale. In the
context of the standard model this implies that only one
entry of the three Yukawa matrices is of order unity, while
all other entries are numerically small. In the context of
the supersymmetric standard model, we find that there are
now two features of flavor physics that must be considered
at the zeroth order level: (1) the large mass of the top
quark and (2) the near absence of flavor-changing neutral
currents strongly suggests that scalars of a given charge
of the light two generations are degenerate [1,2]. In this
paper we explore the consequences of assuming that both
of these salient features arise from a common origin —a
flavor symmetry group Gf.

The existence of an exact flavor symmetry group at
high energies is very plausible —it is suggested by the
replication of generations. However, in many supersym-
metric theories it becomes a necessity. Presumably the
ultimate theory of flavor will involve no small parameters:
all the dimensionless couplings will be of order unity and
small mass ratios will result from hierarchies of dynami-
cally generated mass scales, or perhaps from loop factors.
If the supersymmetry breaking squark masses appear as
hard interactions in such theories, as they do in super-

gravity models, then the couplings of order unity will lead
to large radiative contributions to the squark masses [4].
The degeneracy between the first two generation scalars
can only be maintained if the dimensionless couplings of
the theory possess a non-Abelian flavor symmetry Gf.

What should we take for Gf? In the context of super-
gravity theories it was suggested that a U(N) invariance of
the Kahler potential, where N is the total number of chiral
superfluids of the theory, be used to protect the squark de-
generacy [5]. However, in this paper we require that Gf
also acts on the superpotential interactions that generate
the fermion masses, so this U(N) invariance is not pos-
sible. Flavor symmetries that have been considered to
date fall into two categories.

(1) Unified —The .group is such that in the symmetry
limit there is no distinction whatever between generations.
This occurs if the three generations are assigned to an
irreducible representation that has three indistinguishable
components —such as a triplet of SU(3).

(2) Asymmetric The actio. n of the group is such that
there is no symmetrical treatment of N objects, where
N = 3 is the number of generations. There are many
examples with Gf taken to be U(1)" [6], SU(2) [7], or
O(2) [8]

A unified Gf has the advantage of providing a more
complete theory of flavor, whereas an asymmetric Gf
does not provide an understanding of the difference
between the generations. On the other hand, a unified Gf
must be broken by couplings of order unity to obtain I„
whereas an asymmetric Gf, such as SU(2), can provide
an understanding of the salient flavor features even in the
absence of symmetry breaking. In this paper we propose
to combine the advantages of a unified Gf with those
of an asymmetric Gf by introducing a third category of
flavor symmetry.

(3) Symmetric —The group h. as an action that is identi-
cal on three objects, yet has a representation structure that
treats the generations differently.

In searching for such a group we are guided by three
principles. (a) The fields of the theory are those of
the minimal supersymmetric standard model: three gen-
erations and two Higgs doublets H„and Hd (b) The.
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group should be a local discrete symmetry [9]. Continu-
ous global symmetries are broken by quantum gravity
[10] and should therefore be gauged. However, flavor
symmetries must be broken to generate Yukawa matri-
ces, and the breakdown of gauged flavor symmetries splits
masses of different families due the D-term contribution
[11]. (c) The representation structure of the three gener-
ations should be (1 + 2), such that, in the Gf symmetry
limit, the top quark Yukawa coupling is allowed, and the
non-Abelian nature of the group maintains degeneracy be-
tween the scalars of the lighter two generations.

The discrete non-Abelian group with fewest group ele-
ments is the symmetric group 53. By its very defini-
tion it acts symmetrically on three objects. Remarkably
it has two singlets and a doublet as irreducible representa-
tions, and therefore offers an excellent match to the flavor
problem of supersymmetric theories. The action of 53
has a geometrical interpretation as all possible rotations
in three dimensions that leave an equilateral triangle in-
variant. The three vectors representing the vertices of the
triangle, e&, e2, and e3 in Fig. 1, are treated identically by
the group. Yet the sums and differences of these vectors
form a single representation (v3) and a doublet representa-
tion (v~, vq), whose two components have different group
properties. For instance, an expectation value of v~ leaves
a Zz subgroup generated by (12) element, while that of vq
breaks S3 completely. Despite a geometrical symmetry
amongst three objects, there is also a geometrical under-
standing of the differences between the generations.

The group S3 has six elements,

S3 = te, (12), (13),(23), (123), (132)), (1)
where e is the identity element. The two elements (123)
and (132) are 120 rotations of the triangle around the axis
v3 = (1, 1, 1)/~3, which form the Z3 subgroup of even
permutations in S3. The (12), (13), and (23) elements ro-
tate the triangle by 180' around one of its symmetry axes,

V2

which are odd permutations. The vector v3 flips its sign
under odd permutations but does not under even permuta-
tions. This is a nontrivial singlet representation that we
call 1~, and will be identified with the third generation
later. Two other orthogonal vectors v~ = (1, 1, —2)/~6
and v2 = (—1, 1, 0)/~2 form a doublet representation 2
of S3. We identify them later with first and second gen-
eration fields, respectively. Any 2 representation can be
written as a two-vector in (v~, v2) space. There are only
three irreducible representations of 53. 1~ and 2 above and
another singlet ls, which is a trivial representation (invari-
ant). The ls representation can be obtained as a symmetric
product 'xy of two 2's, x; and y;, while 1z is an antisym-
metric product 'xo.2y. The other combinations form a 2
such as 'xo 3y —v~ and 'x cr ~ y ——v2 and 2 contains a
totally symmetric invariant ('xo.3y)z~ —('xcr&y)z2. The
decomposition of tensor products is shown in Table I.

Discrete non-Abelian groups with only singlet and
doublet representations, such as Ss [12] and Q2„[13],
have been used before to obtain a heavy top quark.
However, this is clearly also possible with Abelian
groups. In this paper we combine the supersymmetric
motivation for some non-Abelian nature to Gf with the
aesthetic desire for a symmetric flavor group.

Despite the encouraging features of 53, it is not possible
to satisfy the few guiding principles (a), (b), and (c)
above using a single 53 as Gf. For d and ~ to be
degenerate, (d, s)1 and (d, s)~ should both transform as
2. Since 2 X 2 = 1~ + 1~ + 2, both md and m, are
allowed by 53, no matter whether Hd is assigned to 1&
or to 1z. An enlargement of the group is thus necessary.
One possibility is to search for interesting structures in
larger discrete groups, such as S„, D„, Q2„, and A(3n )
[13,14]. We find the geometric picture of the three
generations arising from the symmetric action of S3 to
be sufficiently compelling that we prefer to replicate 53
factors. Hence we consider a group 53 X 53 X 53 with0 U D

each of Q, U, D transform as 1 + 2 under its own S3,
while transforming trivially under other factors.

We identify the third generation with 1& rather than

1~, because we would like to consider the discrete fla-
vor group as an anomaly free gauge symmetry. The only
anomaly one can discuss with the low-energy particle con-
tent alone is S3 X H where H is either SU(2) or SU(3)
in the standard model [15]. Consider the element (12),
which leaves 1q and v] in 2 invariant but changes sign of
1~ and v2 in 2. To avoid an anomaly, the total number
of 1& and 2 with a given quantum number has to be even.
In our context, this requirement uniquely selects 1& + 2.

TABLE I. Decomposition of tensor products of two represen-
tations into irreducible representations.

1A

FIG. 1. S3 acts as a rotation of the triangle spanned by three
orthonormal vectors ef 23 ~ The vector v3 corresponds to the 1A
representation, and two vectors ~~ 2, in the plane of the triangle,
to the 2 representation.
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The anomaly freedom of this choice can be easily un-
derstood by noting a vector 3 in an anomaly free group
SO(3) decomposes to 1A + 2. Furthermore, this choice
is precisely the one that allows a geometric interpretation
of families in terms of rotations. It is interesting to see
that the three generations, although in a reducible repre-
sentation 1& + 2, require each other to render the theory
consistent quantum mechanically.

The flavor transformation properties of the quarks are
shown in Table II. The quantum number of H, is fixed to
allow m, by Gf. Anomaly freedom then dictates an iden-
tical transformation for Hd. Because of this charge assign-
ment, only the top quark is heavy in the (S3) symmetric
limit. The top-bottom asymmetry, or more generally the
up-down asymmetry, is built into the representation struc-
ture of the Higgs boson. On the other hand, squark mass
matrices all have the form diag(Mi, Mt, M3). The lepton
sector will be discussed elsewhere.

Now we consider the breaking of (S3) symmetry
and discuss its consequences on the Yukawa and squark
mass matrices. In order to keep the number of breaking
parameters as small as possible, we take the following
"minimal" form of the Yukawa matrices [16],

( h„O(gh, h, ) h, A3A(—p + i rI) )
Y, = O(gh h, ) h, —htAA

0 0 h,

(
Y, = O(h, A) h, 0 (3)

0 0 hb)
which correctly reproduce the Cabbibo-Kobayashi-
Maskawa (CKM) matrix in Wolfenstein parametrization.
The quark masses are related to the Yukawa couplings
by m„, , = h„, ,(H, ) and md, b

——hd, b(Hd). We
assumed (Y,)i2 and (Y,)2i to be O(gh, h, ) and (Yd)tz to
be O(h, A), because larger off-diagonal elements need a
fine-tuning in the determinant. We actually do not need
these elements and can set them vanishing, but we keep
them to make the discussion more general ~

The largest breaking parameters in the Yukawa matrices
are hb, which transforms as (1s, 1A, 1A), and h, A A as
(2, ls, ls). hb breaks 53 X S3 down to a subgroup
53 X 53 /Z2 where (even, odd) and (odd, even) elements

U,D
are removed. Note that the diagonal subgroup S3

'

is a subgroup of the unbroken symmetry. h, A A is a
v~ element in a doublet, and breaks S3 to S2 = Z2 =0 0

te, (12)). This Z2 flips the sign of second generation

~Q

gU

gD

(1A, 2)
(lA, 2)

(lA, 2)

1A

1A

1A

1A

TABLE II. Quantum number assignments of the fields under
(53)3 symmetry. Q refers to left-handed quark doublets, U (D)
to right-handed up- (down-) type quarks

Hd

and Higgs fields, while leaving the first generation field
unchanged. Therefore Q2 can acquire a Yukawa coupling
while Qt cannot. h, and h, belong to breaking parameters
(2, 2, 1s) and (2, 1A, 2), respectively, and break the diagonal

U,D
S3

' to Z2 as well, which still keeps all first generation
fields massless. After including the smaller breaking
parameters, the symmetry (53) is completely broken. In
this way, the hierarchical pattern of the Yukawa matrices
can be obtained by a sequential breaking of the flavor
symmetry.

Now we turn to the squark mass matrices. Since
the constraints from the flavor-changing neutral currents
are at best of order a few times 10, we work out
the nondegeneracy in squark masses down to this order.
It is straightforward to work out how the breaking
parameters enter the scalar matrices. For m~ matrix,
the leading correction comes from (2, 1s, ls) with
and v2 components of O(h, A2A) and O(h, A A(p + i g)),
respectively. Therefore, m~ has the following form,
which is Hermitian,

( Mt +mh, AA ~ ~ ~

2 2 3 2 2 2

r M)+mh2 2 2
~ ~ ~ ~ ~ ~

5

m — mhA M —mh

The authors of Ref. [3] listed the constraints on the
off-diagonal mass matrix elements for mq —1 TeV in
the basis where the Yukawa matrices are diagonal. We
adopt their notation and list the constraints in Tables III,
IV, and V. It is clear that our mass matrices satisfy all
constraints rather easily. The constraints on the left-right
mixing mass matrices, which are tightly constrained by
S3, are also easily satisfied.

A natural question is how much stronger the constraints
become when we introduce further breaking parameters

3987

m&
— m h, A A(p —

t'ai)

Mt —m h, A A

(m' h, A A(p —ig) m' h, A A M3 )
(4)

where a possible correction to (m~c3)33 was absorbed
into M3. Here and hereafter, I and m' are arbitrary
numbers comparable to M& and M3, and they are in
general different for Q, U, D For the mU m. atrix, the
only correction comes from the square of the (2, 2, 1&)
breaking parameter of O(h, ). The resulting form is

/Mt +mh,
m ghh M —mh . . . (5)
m' Qh, h„m' h

The ID matrix receives corrections from two sources
at the leading order. One is the square of the (2, 1A, 2)
breaking parameter of O(h, ), and the other is a product
of three breaking parameters (ls, 1A, 1A), (2, 1A, 2), and

(2, ls, ls) of O(h, hbh, AA ). They are of the same
order of magnitude and have the same group theoretical
structure (1s, ls, 2). We keep only the first for simplicity
and obtain
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TABLE III.
d-S.

The constraints and the consequence of (S3) symmetry on the mass splittings in

Upper bound [3]
This model

(SLL)12

0.05
A, AA

(13RR ) 12

0.05
A, A

(13LR) 12

0.008
A, A

(~1'2&

0.006

(13LL) 12(~RR) 12

TABLE IV. The constraints and the consequence of (S,)3 symmetry on the mass splittings
in d-b.

Upper bound [3]
This model

(l5LL)13

0.1

A, AA2

(~RR)13

0.1

A

( 5LR ) 13

0.06
hbh(AA3

&~13)

0.04

(12LL) 13(~RR)13

TABLE V. The constraints and the consequence of (S3)3 symmetry on the mass splittings in
u-c. We assumed that the rotation angle between u and c is O(vjh, /h, ).

Upper bound [3]
This model

(13LL)12

0.1

A, AA

(~RR)12

0.1

Qh„h3

( 13LR ) 12

0.06

( 13L R ) 12

0.04

V (~LL)12(~RR)12

and introduce mixing in the right-handed fields as well.
The off-diagonal elements of ID and mU can be much2 2

larger than the above estimates. However, they are at
most of the same order as those in m~ if we assume a
similar order of mixing angles in the right-handed fields.
On the other hand, constraints become even weaker if we
attribute all CKM angles to the down sector, since the
breaking parameters are then proportional to hb rather
than h, . A potentially dangerous breaking is that in

(ls, ls, 1~) or (1~, 1s, ls), which do not contribute to the
Yukawa matrices. However, they are presumably as small
as h, or hd because they break the Z2 symmetry, which
keeps the first generation fields massless.

In summary, we have proposed a geometric theory of
I]avor based on the discrete group (S3) . The group
acts symmetrically on three objects, yet gives fundamen-
tally different characteristics to each generation. The
three generations belong to a reducible representation
2 + 1&, although they are not unified, they require each
other for anomaly cancellations. Only the top quark
is heavy in the symmetry limit, and first- and second-
generation squarks are degenerate. Hierarchical Yukawa
matrices can be obtained by a sequential symmetry break-
ing. Flavor-changing processes are highly suppressed, al-
lowing squarks at Fermilab Tevatron energies.
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