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Supersymmetry breaking in the early Universe induces scalar soft potentials with curvature of the
order of the Hubble constant. This has a dramatic effect on the coherent production of scalar fields
along flat directions. For moduli fields, this breaking generically gives a concrete realization of the
moduli problem by determining the field value at early times. However, it suggests a solution if the
minimum of the induced potential coincides with the true minimum. For the Affleck-Dine mechanism,
large squark and slepton expectation values generally do not result if the induced soft mass squared is
positive, but they do occur if it is negative. An acceptable baryon asymmetry can be obtained without
subsequent entropy releases and is related to the mass of the lightest neutrino.
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Low energy supersymmetry, if it exists in nature, is
likely to have dramatic consequences for the early Uni-
verse. One of the most striking stems from the existence
of flat directions in the scalar potential. Such directions
are a generic feature of supersymmetric theories, unfamil-
iar in conventional field theories. In string theory, for
example, there are often moduli which label degenerate
classical vacuum states of the string. These states remain
degenerate to all orders in perturbation theory. In the min-
imal supersymmetric standard model (MSSM) there exist,
at the level of renormalizable operators and ignoring su-
persymmetry breaking, a large number of flat directions,
along which some combination of squark, slepton, and
Higgs fields have expectation values. In the early Uni-
verse if the fields parametrizing a flat direction start dis-
placed from the true minimum, coherent oscillations result
when the Hubble constant becomes smaller than the effec-
tive mass. The energy stored in these oscillations amounts
to a condensate of nonrelativistic particles. The production
of such condensates should be a generic feature of super-
symmetric theories. In this paper we discuss the effect of
supersymmetry breaking in the early Universe on coher-
ent field production, with emphasis on the cosmological
moduli problem [1-3] and Affleck-Dine (AD) scenario for
baryogenesis [4].

Most discussions of the coherent production of scalar
fields assume that the potential along flat directions arises
from the same supersymmetry (SUSY) breaking responsi-
ble for the mass splitting among the standard model fields
in the present Universe. The curvature of the potential
would then be set by the gravitino mass, V" ~ m§/2. If
this were the case, the field would be highly overdamped
for H > ms3;, and only begin to oscillate when H ~
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m3/>. Here we observe that the finite energy density in
the early Universe induces a soft potential with curvature
of the order of the Hubble constant, V" ~ H? [5]. The
flat directions are then always parametrically near critically
damped and efficiently evolve to an instantaneous mini-
mum of the potential. For both the moduli problem and
AD mechanism, this leads to a precise way of understand-
ing the “initial conditions” for the amplitude of the fields
when they begin to oscillate freely at H ~ ms3/;. In the
case of the moduli problem, this suggests a possible solu-
tion if the minimum of the induced potential coincides with
the true minimum. This can be made technically natural
if there is an enhanced symmetry point on moduli space.
For the AD mechanism, it gives a much more complete
understanding of the conditions for baryogenesis, namely,
a negative mass squared from the finite energy breaking.
This permits an estimate of the asymmetry, which system-
atically includes the effects of nonrenormalizable terms in
the superpotential. The resulting asymmetry is largely in-
dependent of any assumptions about initial conditions.

The finite energy density in the early Universe breaks
supersymmetry. In a thermal phase this is manifest
through the disparate occupation numbers for bosons and
fermions. In an inflationary phase in which a positive
vacuum energy dominates, the inflaton ¥ or D component
is necessarily nonzero, implying supersymmetry breaking.
The same is true in the postinflationary phase before
reheating, when the inflaton oscillations dominate, and the
time averaged vacuum energy is positive.

We will assume that supersymmetry breaking is trans-
mitted to light fields through nonrenormalizable interac-
tions [6]. Such nonrenormalizable interactions can have
important effects. To illustrate this, consider a term in the
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Kahler potential of the form

8K = x"xo'p/Mp, (1)
where y is a field which dominates the energy density of
the Universe, ¢ is a canonically normalized flat direction,
and Mp = m,,/\/—8_77T is the reduced Planck mass. No
compact symmetry prevents such a term, which can be
present directly at the Planck scale or be generated by
running to a lower scale. If y dominates the energy
density, then p = ([d*@ xTx). In a thermal phase
the expectation value arises from kinetic terms over
the y component thermal distributions. In an inflaton
dominated era it is given by the inflaton F components
and kinetic energy. The interaction (1) gives an effective
mass for ¢ of 8L = (p/M3)p1 ¢ (note that a positive
contribution in the Kahler potential gives a negative
contribution to m?). In a flat expanding background,
p = 3H2M;2), so that m2 ~ H?. Thisis a generic result,
independent of what specifically dominates the energy
density. For H = mj3/,, this source for the soft mass is
more important than any hidden sector breaking.

In order to be concrete about the evolution along flat
directions, we will assume an inflationary ansatz. In most
models the correct magnitude of density and temperature
fluctuations in the present Universe is obtained for H ~
1037 1* GeV during inflation. In order to avoid the gravi-
tino problem the reheat temperature after inflation cannot
(conservatively) be larger than about 10° GeV [7]. This
implies that by the era of reheating, H < m3;,. With
this restriction, the induced potential discussed above is
important only (ignoring any preinflationary evolution)
during inflation and in the prereheating era dominated by
inflaton oscillations. We, therefore, need to consider only
the couplings of the inflaton to the flat directions.

Since the important couplings between the inflaton and
flat directions arise from Planck scale operators, super-
gravity interactions should be included. The supergravity
scalar potential is

V = KM D,WKID;W* — % |Wl2>
P

+ § fa, D°D", )
where D;W = W; + K;W/M3, W; = aW/de;, K/ =
(Ki;)‘l, and f,, is the gauge kinetic function. W(¢p)
and K (¢, @) are the superpotential and Kahler potential;
and D¢ = K,T%¢, where ¢ includes in general the flat
directions, inflaton(s), and hidden sector. If the inflaton
potential arises from F terms, the term in parentheses has a
positive expectation value, and a nontrivial potential along
flat directions is obtained. Even if D terms dominate
the inflaton potential, with nontrivial Kahler potential
couplings [such as (1)], a potential results. The general
form for the induced potential from (2) along an exact flat
direction is of the form

V(¢) = H>MLf(¢/Mp), 3)
where f is some function. Note that the curvature is
set by the Hubble constant, V/ ~ H?, and the scale for

variations in the potential is Mp. The general lesson
is that in the early Universe, when H > mj3,, the
characteristic scale for soft parameters is of the order of
the Hubble constant.

In the rest of this Letter we describe some of the
consequences of this observation for the moduli problem
and AD mechanism of baryogenesis. In a forthcoming
paper we will present a much more detailed discussion of
these issues, with particular attention to the computation
of the baryon asymmetry [8].

The coherent production of string moduli leads to the
string version [2,3] of the Polonyi problem [1]. The
late decay of such a condensate can lead to a number
of cosmological problems, including modification of the
light element abundances. During inflation, the moduli
evolve in the potential (3) with H ~ const. Since the
fields are parametrically close to critically damped, they
are driven to a local minimum of the potential (up to
quantum de Sitter fluctuations) within a few e-foldings.
This is in contrast to the usual assumption that “scalars
are not diluted during inflation.” However, the form
of the potential does not necessarily coincide with that
after inflation or from hidden sector SUSY breaking.
In general the minima are separated by O (Mp). Once
H ~ mj3/,, the moduli then start to oscillate freely about
a true minimum with amplitudes of @ (Mp) [8]. This just
gives a concrete realization of the initial conditions for the
moduli problem by specifying the field for H = ms3,.

The present discussion suggests a possible solution
of the moduli problem. If the minima coincide at
early and late times, the moduli are driven to the true
minimum during inflation. One possibility under which
the minima can coincide occurs if there is a point of
enhanced symmetry on moduli space [9]. The potential is
necessarily an extremum at such points, since the moduli
transform under some symmetry. Enhanced symmetry
points are familiar in string theory. In many string
compactifications, there are points in the moduli space
where all of the moduli, with the notable exception of
the dilaton, transform nontrivially under some enhanced
symmetry.

An example of this phenomenon is provided by the Z
orbifold [10]. This orbifold is usually described by tak-
ing a product of three two-dimensional tori. In this con-
struction the resulting theory has a variety of symmetries
including a SU(3) gauge symmetry and two Z3 R sym-
metries. All the moduli are charged under some of these
symmetries, except those which describe the three two-
dimensional tori. At special points in the moduli space,
there are further enhanced symmetries under which these
remaining moduli, with the exception of the dilaton, are
charged.

It might be that the true ground state of string theory
is near such a point of enhanced symmetry. Alternately,
some or all of these symmetries might be broken by small
O (m3/;) vacuum expectation values of other fields. The
main problem with this idea is the dilaton. It is not known
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if such an enhanced symmetry exists for this field, and
even if it does, it is likely to lie at a point where the
gauge coupling is extremely large. So if symmetries are
the solution of the moduli problem, the dilaton must be on
a different footing than the other moduli. For example,
the dilaton mass might arise from dynamics which do not
break supersymmetry. The serious difficulties which such
an idea must face have been discussed in Ref. [3]. The
possibility also exists to solve the moduli problem with
a late inflation [11,12]. However, unless H << m3/,, the
minimum may be shifted as for standard inflation.

In the MSSM, at the level of renormalizable operators,
there are numerous flat directions in the space of scalar
fields. Most of these involve squarks or sleptons and carry
B and/or L. A simple example is the direction [13]

we(8) e-() W

where ¢ parametrizes the flat direction. In the origi-
nal discussion of Ref. [4] it was assumed that directions
such as this were exactly flat in the supersymmetric limit
[14] and that ¢ was initially @ (Mgyt) or @ (Mp). For
H = m3/,, the field would begin to oscillate about the
true minimum at ¢ = 0. In addition to the B and L con-
serving terms, the soft potential was assumed to contain
B and/or L violating dimension-four terms suppressed by
m% 1/ M3. As a result, the coherently oscillating field de-
velops a large baryon number. The subsequent decay of
the condensate then gives a substantial (even enormous)
baryon asymmetry [4,13,15].

With the inclusion of nonrenormalizable terms in the
superpotential [16], and the induced soft potential, the sce-
nario for AD baryogenesis is very different. Nonrenor-
malizable terms in the superpotential, if present, will lift
flat directions even in the supersymmetric limit. These
can take the form

SW = (A/nM"3)¢p", (5

where M is some large mass scale such as the grand
unified theory or Planck scale. For the LH, example
given above, the lowest order term of this form, assuming
R vparity, is (A/M)(LH,)*>. The power law growth in
the potential from these terms limits the fields to be
parametrically less than Mp (even for M ~ Mp). In
addition, A terms, proportional to ¢”, can result from
cross terms in (2) and higher-order terms in the Kahler
potential. In light of our discussion of early Universe
SUSY breaking, the scalar potential for H > ms3/, then
has the form

|¢|2n~2
M?2n—6 "~

aAH¢"

nMn=3 1P

V(g) = cH?*|pI* +

(6)

where ¢ and a are constants of @ (1). The A term has the
important effect of violating B or L and has a definite CP
violating phase relative to ¢.

With minimal Kahler potential, the coefficient ¢ arising
from (2) is positive (¢ = 3 during inflation for F type
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inflaton breaking). The flat direction is then driven
exponentially, at a fast rate, to the origin during inflation.
Quantum de Sitter fluctuations give (8¢2) ~ H?, but
with a correlation length of @ (H ') [17]. Any resulting
baryon number then averages to zero over the present
Universe [18]. In addition, the relative magnitude of the
B violating term in (6) is small for H < M.

A non-negligible baryon number can result if the B
violating term in (6) has the same magnitude as the
B conserving terms. This will occur if ¢ < 0. This
is perfectly possible for suitable choices of the Kahler
potential; no fine-tuning is required. In this case the
minimum of the potential, ignoring for the moment the
A term, is given by

|pol = (\/“‘_CHM"_B/mA)I/(n—Z). 7

Inclusion of the contribution of the A term does not
substantially change the magnitude of the minimum, but
does give n discrete minima for the phase of ¢. During
inflation, if |c| is not too small, the system quickly settles
into one of the minima. The observable Universe is then
left with a single value of the initial phase of ¢. After
inflation, H changes with time as in a matter-dominated
universe and ¢ decreases. A straightforward analysis of
the equations of motion in this era indicates that for n =
4, the field oscillates about a point where V" (¢) ~ H?,
just slightly larger than ¢o(z). Thus when H ~ m3/2,
(@) ~ ¢o. At this time, the soft potential from hidden
sector SUSY breaking becomes important. The A term
from this source is comparable in magnitude to the other
terms in the potential [as may be seen by simply plugging
¢ into Eq. (6)] and in general has a different phase than
any arising from coupling to the inflaton. The B or L
violation is therefore maximal during the epoch at which
the field begins to oscillate freely, thereby imparting a
substantial asymmetry to the condensate. The resulting
baryon number per condensate particle is near maximal,
ny/ng ~ O(1071) [if the relative phases are @ (1)]. Note
that this is independent of A/M. Once H < mj3/3, the
field value decreases and the relative importance of the
A term is reduced. The baryon number imparted to the
condensate is therefore conserved in this epoch. This
scenario has been checked by numerical integration of the
equations of motion [8].

The baryon-to-entropy ratio depends on the total den-
sity in the condensate and the inflaton reheat temperature,
Tr. The flat direction ¢ begins to oscillate freely when
the coherent oscillations of the inflaton still dominate the
total energy density, p;. Since py ~ m§/2¢§, the frac-
tional energy in the condensate is

po/pr = (mypM" 3 [ AMp=2)> =2, (8)

Note that pg is larger for smaller A/M" 3. After the
inflaton decays, the baryon-to-entropy ratio is then

ny/s = (ny/ng) (Tr/me)ps/pi - 9

This estimate is insensitive to the details of the decay of
the AD flat direction, as long as it has nonzero B — L.
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The baryon-to-entropy ratio depends mainly on 7Tk and
the order at which the flat direction is lifted. For Ty
just below the gravitino bound and M ~ Mp, n,/s is too
large for n = 6. However, for the LH, direction with
n = 4, after sphaleron processing of the resulting slepton
number, ny/s ~ 10719[Tx/(10° GeV)|M/AMp. This is
a quite reasonable range. At low energies the operator
(A/M) (LH,)?, which lifts this flat direction, gives rise to
neutrino masses. In this scenario, n;/s can therefore be
related to the lightest neutrino mass, since the field moves
out farthest along the eigenvector of L;L;, corresponding
to the smallest eigenvalue of the neutrino mass matrix,
ny/s ~ 1071°[T%/(10° GeV)] (107° eV)/m,. The total
baryon density in the condensate grows rapidly with »;
only the LH, direction gives a reasonable result without
additional entropy releases after inflaton decay.

In summary, the large supersymmetry breaking in the
early Universe gives a precise realization of the initial
conditions (when H ~ mg3/;) along flat directions. It
seems quite difficult to solve the moduli problem unless
there are symmetries which ensure that the high energy
and low energy potentials process the same minimum.
We have seen that (much to the surprise of some of the
authors) the AD mechanism is quite robust. Provided that
the curvature of the induced ¢ potential at the origin is
negative for H >> ms/;, a desirable value for n;, /s results
for the LH, direction when account is taken of higher
dimension operators. More detail about the evolution
of the fields, other standard model flat directions, the
possible sources of supersymmetry breaking, and the
decay of the condensate will be presented in Ref. [8].
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