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Comment on "Crossover Between Dissipative and
Nondissipative Electron Transport in Metal Wires"

the electron gas to be G„we find [4]

G, = (12K T)/R, (2)

Recent experiments [1]have studied electron heating in
metal wires at low temperatures, T ~ 1 K. The electrons
are heated above the temperature of the phonons in the
wire, which remain close to the substrate temperature.
The authors report a result for the scaling of the critical
electric field, E„with wire length L and electron tempera-
ture T, where E, is the field at which the electrons are
heated by an amount AT = 0.1T. At low temperatures
E, is found to obey the relation

E, = 3 (k, /e) T/I. , (1)
with e the electron charge and k~ the Boltzmann constant.
(At higher temperatures, E, is proportional to Ts~z and
does not depend on L, as expected for phonon cooling. )
At the temperatures where Eq. (1) applies, the power
produced in the wire is dissipated (i.e. , converted into
phonons) in the leads, not in the wire.

Kanskar and Wybourne explain the result in Eq. (1)
by an earlier theoretical paper [2]. However, that theory
paper dealt solely with phonon cooling of the electrons,
not electron diffusion out of the wire, which dominates
the cooling process at low temperatures [3,4]. Reference
[2] also did not include the fact that the electrons share
energy among themselves rapidly. It is now know that
in such dirty metals the electron-electron energy sharing
time, 7.„,is much shorter than the electron phonon time
[5]. These two important aspects of the experiment were
considered previously for wires in two different contexts:
a superconducting microbridge used as a THz heterodyne
mixer [3], and heating experiments on a long strip of
GaAs two-dimensional electron gas below 1 K [4].

We propose a physically appropriate explanation for the
observations in Ref. [1] regarding E, Heat fiow w. ithin
the electron gas is governed by the Wiedemann-Franz
relation when electron-electron scattering is rapid enough
to ensure a local electron temperature. For the wire
geometry the spatial dependence of the temperature rise,
for a small temperature increase, is an inverted parabola
[4]. Taking AT to be the average temperature increase
and defining the thermal conductance out of the wire via

with R the electrical resistance of the wire and X the
Wiedemann-Franz constant, 5 = 3(ks/e) . Note that
heat is able to diffuse out of both ends. For a temperature
increase of 0.1T,

hT = 0.1T = P/G, . (3)

P is the power produced in the wire, given by V /R =
(E,L) /R for AT = 0.1T Thu.s,

E, = 2(kp/e) T/L . (4)
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Equation (4) gives a result like the experiment, Eq. (1),
but with a somewhat different prefactor. This difference
may result from the specific definition of E, . The scaling
of E, inversely with L is simply due to the fact that longer
wires provide poorer cooling of the electrons in the center,
The scaling with T is due to the Wiedemann-Franz
relation. In any case, at low temperatures electron cooling
dominates. We agree with the authors' conclusion that
phonon cooling operates at higher temperatures.
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