
VOLUME 75, NUMBER 21 PH YS ICAL REVIEW LETTERS 20 NovEMBER 1995
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Analytical expressions for width and conductance peak distributions for quantum dots with
multichannel leads in the Coulomb blockade regime are presented for both limits of conserved and
broken time-reversal symmetry. The results are valid for any number of nonequivalent and correlated
channels, and the distributions are expressed in terms of the channel correlation matrix M in each lead.
The matrix M is also given in closed form. A chaotic billiard is used as a model to test numerically
the theoretical predictions.
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Advances in nanostructures technology make possible
the manufacture of semiconductor devices known as
quantum dots [1] where electrons are confined to very
small two-dimensional regions. By connecting external
leads to such devices, it is possible to study their
electronic transport properties: the conductance can be
measured as a function of the Fermi energy and/or as a
function of a magnetic ftux through the dot. Of particular
interest are dots that are weakly coupled to leads, due to
the presence of barriers at the interface between dot and
leads. In these cases the resonance widths I are small
compared to their mean spacing A. At low temperatures
kT ( 5, only one quasibound level participates in the
conduction process. The resulting Coulomb blockade
peaks of the conductance [2] are equally spaced, but their
amplitude exhibits order of magnitude fluctuations.

For dot sizes that are smaller than the electron-impurity
mean free path, conductance fluctuations are determined
by the dot geometry. We discuss dot geometries which
display classical chaotic motion. In such cases one can
model their transport properties using the concepts of
chaotic scattering [3]. Our results should also hold for
weakly disordered dots in the quasi-zero-dimension limit.
In Ref. [4] a statistical description of the conductance
peaks in the Coulomb blockade regime was developed
using the R-matrix formalism [5] and assuming that the
dot's wave functions are described by random matrix
theory (RMT). Conductance and decay width distribu-
tions were derived for one-channel leads, as well as for
symmetric leads with several equivalent and uncorrelated
channels. However, a more general theory would encom-
pass leads with an arbitrary number of correlated and
nonequivalent channels. Progress in this direction was
made in Ref. [6], where by modeling leads as point con-
tacts [7] spatial wave function correlations were taken into
account. Using the supersymmetry method [8], exact for-
rnulas for the width and conductance peak distributions
were obtained for two-point contact leads. However, the
derivation was restricted to the case of broken time re-

versal symmetry, and could not be applied to leads with
finite width or with more than two-point contacts. On the
experimental side, we note that conductance distributions
are becoming accessible; for ballistic open dots (I » 5)
such distributions were recently measured [9], and simi-
lar experiments are underway in the Coulomb blockade
regime.

In this Letter we present exact formulas for the width
and conductance peak distributions for leads with any
number of channels that are in general correlated and
nonequivalent. These distributions are obtained both for
conserved and broken time-reversal symmetry, and are
completely characterized in terms of the channel correla-
tion matrix M. Our results are valid for both the pointlike
contacts and the continuous extended leads models. We
are able to treat the most general case because our meth-
ods are based exclusively on RMT, which is technically
simpler than the supersymmetry method used in Ref. [6].
To test our theory we use a chaotic billiard, the Africa
[10], for which the statistical distributions of one-channel
leads were recently studied in detail [11]. This model is
particularly useful to study systems with strong channel
correlations. In contrast, the correlations between nearest
points in the discretized Anderson model of a disordered
dot [6] were too weak to produce any significant change
in the width distribution of two-point leads (as compared
with the uncorrelated channels distribution). We remark
that since the partial width is analogous to the wave func-
tion intensity [see Eq. (3) below], our results for the par-
tial and total width distributions can be directly tested in
the microwave cavity experiments [12], where the wave
function intensities are measured at several points and are
spatially correlated.

Provided that I « kT ( 5, which is typical of experi-
ments [1,2], the conductance peak amplitude for a two-
lead geometry is given by [13]

e I lI r

g, where g =
h 2kT + I-r
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and I q (I z) is the partial decay width of a resonance
A into channels of the left (right) lead. Each lead can

I( ) ~(~) 2support A'("l open channels so that I q
l(r) .

where y, z is the partial amplitude to decay into channel
c on the left (right). R-matrix theory gives [5]

h kP, ~t''
y, q

= '
I d54,"(r)'Pq(r), (2)I )

where 0'q is the resonance wave function inside the dot
(scattering region), tIi, is the wave function of an open
channel c in the lead (asymptotic region), and the integral
is taken over the contact boundary between the lead and
the dot. P, and k, are the channel penetration factor
to tunnel through the barrier and the longitudinal wave
number, respectively. An alternative modeling assumes
that the quantum dot is connected to the leads by one or
more pointlike contacts [7]. Every such point contact r,
is considered as a channel, and the corresponding partial
amplitude is [6]

P(y) - D[O»I g Ie. l' — ~(y, —(@, I +)),
p.=i ) c=i

where the metric is D[P] = [P i dP~ for the GOE and

D [P] = P i d P* d P„/2~i for the GUE. To evaluate

(4) we transform @, = g, i @,F,t, to obtain a new s. et
of orthonormal channels (+, I @,i) = 6„. In the limit
N ~ cc, provided that A && N, one finds [15]

P(y) = ( detM)- t '/e r™Ir, -
(5)

where M = (NFtF) '. The distribution (5) is normal-
ized with the measure D[y] —= g, , dy, /2' for the

y.~ = (~.~~/~)'/'+~(r, ), (3)
where M is the area of the dot, 5 is the mean reso-
nance spacing, and n, is the coupling parameter of the
point contact to the dot. Expanding a resonance wave
function with energy e in a fixed basis of states with
that energy 'Pz(r) = gz Pq~p~(r) (the sum is truncated
to N terms, typically much larger than A), the partial
width to decay to channel c can be expressed as a scalar
product y, q = (@, I Pq) = g P,* Pq~, where

(Ii k, P, /m)'/ f de@,*(r)p~(r) in the R-matrix formal-
ism and P,* =— (n, A.A/7r)'/ p*(r, ) in the pointlike
contact model. Expressing the width as a scalar product
allows us to treat the extended lead and the pointlike con-
tact models in an equivalent manner.

The resonance states 9'q are assumed to have Gaussian
orthogonal ensemble —(GOE-) or Gaussian unitarity en-
semble —(GUE-) like statistical properties, depending on
the symmetry class to which the dynamics in the dot cor-
responds [4]. This assumption is valid both for dots with
chaotic dynamics and for weakly disordered dots. The
eigenvector components (Pi, P2, . . . , P~) = P (in the fol-
lowing we shall omit the eigenvector label A) are therefore
randomly distributed P(P) cc 6(g i !/~! —1) [14].
The joint distribution of the partial width amplitudes

y = (yi, yz, . . . , y~) for A channels is given by

( nr

MCC

h (k,P, k, P,i)'/
dS dr' C,*(r)

&& Jo(klr —r'l)@,(r')
for the finite width leads, and

h(n, n, )'/z
Jo(klr, —r,'I) (7)

for the point contact model ~

We turn next to the calculation of the total width
distribution P(I ) in a given lead that supports A channels
and is characterized by a correlation matrix M. Using (5)
and I = g, Iy, l, the characteristic function of P(I ) is
readily obtained and we find

1 e
—ill

277 [det(I —2itM/p)]p/
dt (8)

The matrix M is Hermitian and positive definite, so that its
eigenvalues w, . are all positive. Since I is invariant under
orthogonal (unitary) transformations, P(I ) depends only
on w, an Eq. (8) can be evaluated by contour integration.
When all eigenvalues of M are nondegenerate, we find for
the GUE case

P(l) =

A 1

PG.(l) =
c Wc,=i ')

(9)
For two equivalent channels (Mi~ = M2z = I /2),
Eq. (9) coincides with the result of [6]

PG (I )
—zr/(& —IfI');nh f I (1p)

If I ( 1 —
If I'

2
c'ic ~c'

GOE (p = 1) and D(ty] —= p, i dA,* dA, /27ri for the
GUE (p = 2). Note that for both ensembles the joint
partial width amplitudes distribution is Gaussian, and it
follows that M is just the correlation matrix of the par-
tial widths M„= y,*y, = (@, I @,~)/N. In general, the
channels are correlated (nonorthogonal) and nonequiva-
lent, i.e., have different average partial widths.

Recalling Eqs. (2) and (3), the spatial autocorrela-
tion function C(hr) —= W*(r)W(r + Ar)/I'P(r)lz plays a
central role in deriving explicit expressions for the corre-
lation matrix M. For fully chaotic systems with time re-
versal symmetry, Berry obtained C(hr) semiclassically,
assuming that classical orbits cover uniformly the en-

ergy surface [16]. For an eigenstate of a chaotic billiard
with energy e = 6 k /2m, C(hr) = Jo(klhrl). Alter-
natively, a resonance at energy e can be expanded inside
the dot in the fixed basis p~(r) = M '/ exp(ik~ r),
where the p, 's correspond to N different (random) ori-
entations of k. In the spirit of RMT, assuming that
the expansion coefficients P~ are Gaussian (this hy-
pothesis was confirmed for the Africa billiard [17]) and
using P„"/~i = N '6»l, one can rederive Berry's re-
sult; see also Ref. [18]. The presence of a small mag-
netic flux rIi introduces corrections to C(hr) which are
small in the semiclassical limit and are of the order

Fi (4/4o) /2m &a « 1. Thus, the correlation matrix is
given by
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(2W2 )

f correlation between the two channels.M measures the degree of corre a ion
a sim le form as above.dbt tb

where
is still straightforwar u c

ral ivesalues of M in increasing order ~ ( ~Labeling the inverse eigenvalues o in inc
—Iv

!for an odd number of channels we define1h "'- . ' 'f ' ' '""' '1'n' b
correlated channels, Eq. ~, r. ~11~ reduces to

(
e

—t /&t —f'll„ f.

y'g'M M and 10 is the modified Besselwhere f = M)2/~
function of order 0.
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left and right leads are uncorrelated and characterized by M' and M", respectively. We then use P(g) =
f dI' dI "6(g —I'I "/(I' + I "))P(1 ')P(1 "), where P(I ) is given by (9) or (11). In the absence of time-reversal
symmetry we find

PGUE (g)
16g ~ (Il,2+I/ )

/ 1 1 ( 1

(Q v pd wd) d ~'~~ (v~' v~ ) d'~d i wd'

X Ko i
+ — + SKI

2g ) 1 v, wdi 2g
vwd) 2 wd v,. ) v~wd)

wd)
2

(13)
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FIG. 3. Conductance peak distributions P(g) for A point-
contact symmetric leads (I' = M") with kiAri = l. (a) GOE,
A = 2; (b) GUE, A = 2; (c) GOE, A = 4; and (d) GUE,
A = 4. The convention for the lines is as in Fig. 2.

where v, (wd) are the eigenvalues of M' (M"), and Ko
(KI) are the modified Bessel functions of order 1 (0).

The result of [4,8] is a special case of (13) for one chan-—1 —I"

nel lead with I = I (i.e., vt = wt), while the distribu-
tion of Ref. [6] is obtained for two (equivalent) channels
leads. For time reversal symmetric systems, we also ob-
tained a closed formula for P(g), which has similar struc-
ture to (13). Figure 3 shows a comparison between the
theoretical conductance distributions and those calculated
for the Africa billiard for A-point symmetric leads with
kiAri = 1 and for various values of A.

In conclusion, we have derived in closed form the width
and conductance peak distributions in a quantum dot, for
leads with any number of correlated and/or nonequivalent
channels, and in the presence or absence of time reversal
symmetry. The only required input to determine the
distributions is the channel correlation matrix M, for

which an explicit expression was obtained. Our results
for the decay widths could also be applied to compound
nucleus reactions in the limit of isolated resonances,
where M is evaluated by the optical model.
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