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Structure and Stability of Molecular Carbon: Importance of Electron Correlation
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The electronic structure of medium-size molecular carbon is determined by a variety of methods,
including density functional, quantum chemistry, and quantum Monte Carlo approaches. We
demonstrate (i) significant differences between the mean-field methods in determining the minimum

energy structure of a set of C~p and C2O isomers, and (ii) the crucial importance of an accurate account
of electron correlation which enables us to predict, e.g. , that of the available geometries for C2O the
relaxed graphite fragment (bowl) is lower in energy than either the ring or fullerene isomers.

PACS numbers: 61.46.+w, 36.40.-c, 71.45.Nt

The remarkable stability of the C6p fullerene has
motivated intense research on carbon clusters over the
past decade. The mechanism of formation of fullerenes
is not yet well understood, although many experimental
and theoretical investigations are attempting to answer
such questions. Even for Czp, which is the smallest
carbon cluster that can exist as a fullerene cage, it is
not known whether this structure is stable, and different
studies have shown conflicting predictions [1—7]. Very
recent experiments [3] have found the cyclic and bicyclic
ring structures to be most prevalent, although it appears
that this is predominantly an entropic effect. In addition,
it has been found that another structural form, which
can be considered a curved piece of graphite containing
a pentagon (bowl), was found energetically competitive
with the ring and cage.

Theoretical studies of these structures have also pre-
dicted different energetical orderings, depending strongly
on the theory used: Hartree-Fock (HF) predicts the ring
to be lowest in energy, then the bowl and then the cage,
with a ring-cage difference of —4.5 eV. The local den-

sity approximation (LDA), on the other hand, predicts the
reverse ordering with a cage-ring difference of —4.0 eV.
Generalized gradient approximation (GGA) corrections to
LDA generally reverse back to the HF ordering, although
this depends on which functional is used [1]. Tight
binding as well as recent coupled cluster (CC) calcula-
tions suggest that the LDA ordering is correct, whereas
semiempirical methods tend to reproduce the HF results.
The striking disparity between methods in obtaining the
relative energies of these clusters demonstrates the clear
need for a higher accuracy approach to this problem.

The goal of this Letter is to provide a new level of un-

derstanding via a thorough and systematic study of molec-
ular carbon in medium-size structures with various types
of bonding. To this end, we have carried out calcula-
tions of C~p and Czp isomers with a variety of methods,
including LDA and related GGA techniques, and quan-
tum chemistry approaches, such as CC for sizes which

were not prohibitively large. For a more accurate ac-
count of correlation we used a recently developed quan-
tum Monte Carlo (QMC) approach which is capable of
describing many-body effects for a large number of va-
lence electrons. To support and calibrate the QMC per-
formance, we have also calculated seven hydrocarbons,
ranging from methane to benzene, for which we have re-
produced the experimental binding energies within 1%.
The QMC results have revealed an amazingly fine inter-

play of Coulomb, exchange, and correlation contributions
for various structures and convincingly demonstrate the
necessity of an accurate treatment of electron correlation
for reliable predictions. A comparison of a dozen dif-
ferent approaches provides an interesting view on their
performance and reveals an unexpectedly low predictive
power of the mean-field methods for these systems.

In our QMC approach [8], we treat the core electrons
with nonlocal pseudopotentials [9], and use variational
Monte Carlo (VMC) to find an optimized correlated
many-body trial function PT(R). Then diffusion Monte
Carlo (DMC) is used to remove most of the remaining
variational bias. DMC is based on the property that
the operator exp( —rH) projects out the ground state of
any trial function with the same symmetry and nonzero
overlap [8].

The fermion antisymmetry problem is treated by the
commonly used fixed-node approximation [10]. The trial
function used is a product of Slater determinants of
single electron spin-up and spin-down orbitals times a
correlation factor [11,12],

PT = DIDI exp P u(r t, rIt, r~)

where I corresponds to the ions, i, j to the electrons, and

r;I, rjl, r;~ to the distances. Parametrization and opti-
mization of u(r;t, rIt, r;~), which represents the electron-
electron and electron-electron-ion correlations, are
described elsewhere [13].
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For the HF calculations, we employed 6-31G* (con-
tracted 2s,2p, ld), 6-311G* (contracted 3s,3p, ld) and for
a few cases more accurate basis sets. We found that for
energy differences the 6-311G* basis was adequate, and
thus we used its pseudopotential equivalent in all our cal-
culations. Unexpectedly, we found the 6-316*basis to be
strongly biasing for C2o systems. In particular, the second
uncontracted s and p functions are crucial for an accurate
description of the ring and bowl triple bonds (Fig. 1), and
failure to include these results in a bias which increases
the ring HF energy by about 1 eV and the bowl HF energy
by 0.5 eV when compared with the energy of the cage. In
addition to the basis set, we also carefully checked the ac-
curacy of our pseudopotentials [9] and found that in all
cases the HF pseudopotential binding energies matched
those from full core calculations to within 0.1%.

To test the accuracy of the QMC method for sys-
tems which include carbon and to assess the overall pre-
dictivity of this approach, we investigated the following
seven hydrocarbon systems: C2H2, C2H4, C~H6, C6H6,
CH4, and C3H4 (both propyne and aliene). The elec-
tronic and structural properties of these molecules are well
known experimentally and theoretically [14] and a variety
of carbon-carbon bonding possibilities are covered (e.g. ,

C2H2, C2H4, C2H6, and C6H6 correspond to triple, dou-
ble, single, and 1.5 bonds, respectively). Binding ener-
gies for these molecules, calculated from the HF, LDA,
and QMC methods, are listed in Table I. We first note,
as expected, the LDA overbinding and HF underbinding.

ing

b wl

By contrast, our QMC binding energies are all within 1%
of the experimental values, indicating the high accuracy
of the method. In fact, the average difference from ex-
periment is about 0.1 eV, close to a chemical accuracy of
1 —2 kcal jmol.

Next we carried out calculations on four structures of
C&0. a linear chain, cumulenic and acetylenic rings, and a
compact structure which consists of distorted facing pen-
tagons and has all threefold coordinated atoms. Geome-
tries were taken from previous calculations [15], except
for the compact structure which we optimized within HF.
The moderate size of these clusters (40 valence electrons)
allowed us to compare a host of methods (cf. Table II),
which provides some insight into the physical reasons be-
hind the ability of a given method to describe relative en-
ergies. For example, in HF the high spin (triplet) linear
molecule is only = 1.0 eV above the rings, while in LDA
this energy difference is = 3.7 eV. The correct answer,
as is the case for many systems, lies somewhere in be-
tween HF and LDA. Of the quantum chemistry methods
studied, CCSD(T) (CC with single, double, and perturba-
tionally triple excitations) performs the best, although its
accuracy is strongly dependent on, and severely limited by,
the basis set. The small energy difference between the two
ring structures is dificult to evaluate, and subtle changes
in geometry could cause a shift in energy by = 1.0 eV
[15,16]. We note that CC recovers about 75% of the DMC
correlation energy, while, using our trial functions, VMC
recovers about 85%.

For Cqo, we used geometries from previous calculations
[1] which were optimized within the HF method. Very
high quality trial functions were obtained through several
reoptimizations of the correlated trial wave functions, and
several independent DMC runs were carried out in order to
avoid statistical data correlation and to estimate the error
bars more accurately. From our results (see Fig. 2), it is
evident that correlation energy has a profound effect on
the final energies, and that the ordering of the structures
is a result of the subtle interplay between electrostatic and
correlation terms. As one might expect, the cage has the
largest correlation since it has the highest number of bonds,
all of which are essentially sp hybrids. The bowl has the
second largest correlation and, because of its intermediate
electrostatic contribution, is the lowest in total energy of
the geometries studied. Although the ring has very favor-

TABLE I. Binding energies (eV) of small hydrocarbons cal-
culated using the HF, LDA, and DMC methods. Experimental
values are listed for comparison.

FIG. 1. The three isomers of C20 and their corresponding HF
valence electron density isosurfaces. There are ten triple bonds
in the ring and five in the bowl, and a much more covalent
bonding character in the cage.

Methane (CH4)
Acytylene (C,H, )
Ethylene (C,H4)
Ethane (C2H6)
Aliene (C,H4)
Propyne (C3H4)
Benzene (C6H6)

HF

14.20
12.70
18.54
23.87
22.63
22.70
44.44

LDA

20.59
20.49
28.19
35.37
35.87
35.70
70.01

DMC

18.28(5)
17.53(5)
24.44(5)
31.10(5)
30.36(5)
30.55(5)
59.2(1)

Exp.

18.19
17.59
24.41
30.85
30.36
30.45
59.24
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TABLE II. Energies (eV) of Cip isomers relative to the cumulenic ring structure (Diph) for a variety of methods.

Ring (D]pi, )
Ring (Oqh)
Chain (D4h)
Compact (C~)

'Reference [15].

HF

0.0
—0.05

0.99
7.45

LDA

0.0
0.25
3.629
6.21

MP2

0.0
0.48'
4.44
7.76

MP4

0.0
~ ~ ~

2.26
6.31

CCSD(T)

0.0
—0.02'

2.22
6.59

DMC

0.0
—0.3(I)

2.6(1)
7.2(1)

4.0

30—
2.5

(D
2.0-

G)
1.5

1.0
Ct

+8
HFi', '

able Coulomb and exchange contributions, its correlation
energy is substantially [3.4(2) eV] less than that of the
cage, making it the second most stable structure overall.

Of significant importance is the impact of the geometry
(and how it was optimized) on the energy differences. To
assess the impact of using a particular set of geometries,
we calculated both HF and LDA binding energies for four
different sets of geometries (cf. Table III). Two sets were
optimized within LDA and two were optimized within HF
theory. It may initially seem as though the cage would
have the most widely varying energies, since it is the least
symmetric structure and originates from perfect Ih geom-
etry, which has a large Jahn-Teller instability. We find,
however, that in fact the cage energies vary by less than
0.5 eV, whereas the variation of ring energies is more than
twice as much. This can be understood by considering
the important role of the triple bond, as LDA favors more
homogeneous and less dimerized structures. A compari-
son of different geometries within correlated calculations
requires further investigation. However, within the scope
of this Letter we have concentrated on energy differences
between various isomers for geometries previously pub-
lished [1].

One of the most important results obtained is the
large difference in predictions for carbon systems between
LDA, LDA-related approaches, and other methods. We
believe that the problem has to do with the enormous

TABLE III. HF and LDA binding energies (eV) of C2p
isomers for four different sets of geometries optimized within
HF and LDA.

HF' HF LDAb LDA'

variability of carbon structural forms, where systems with
different types of bonding and, in this case, even dimen-
sionality, can form competing structures. The character
of the LDA errors is very interesting; LDA highly fa-
vors the compact structure with larger density against the
more extended ring with lower density. This trend has
been shown for another set of first row element systems,
namely, the nitrogen atom, molecule, and solids [17].
Very interestingly, for systems with a smoother electronic
density such as various medium range structures of silicon
clusters, LDA provided excellent predictions of relative
energies [18]. This shows, in accord with recent observa-
tions [17,19], that there is a density dependent systematic
error in the currently used LDA functional (the exchange
correlations of Hedin and Lundquist and Vosko, Wilk, and
Nusair led to almost identical LDA pictures).

The GGA's [20], which were designed to fix this defi-
ciency, are evidently not very reliable. We have evaluated
the relative energies of the three C20 isomers with a variety
of such gradient-corrected functionals. Using the previ-
ously optimized HF geometries in all these calculations, we
find, surprisingly, that the different functionals behave very
differently and yield completely different energy orderings
(cf. Table IV). In particular, the 8-LYP functional (Becke-
88 gradient corrected exchange functional, Lee-Yang-Parr
correlation functional) was previously shown to essentially
bring back the HF picture, which is the complete reverse
of the LDA energy ordering. The more sophisticated B3-
LYP functional, which has been extremely successful in
reproducing the bond energies of small molecules, also
behaves in a similar manner. However, the inclusion of
the correlation functionals of Perdew and Wang (PW91)
yields a different picture. The bowl is now the most sta-
ble isomer, in qualitative agreement with the QMC results,

0.5

0.0

-0.5
t'I Ag bowl cage

FIG. 2. The relative energy differences for the ring, bowl, and
cage C2p isomers (DMC error bars are 0.2 eV). For each theory
the lowest energy structure is taken as a reference. BLYP refers
to calculations done with the Becke-Lee-Yang-Parr functional.
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84.67
83.05
79.98

154.38
157.43
158.89

84.70
83.06
80.22

154.20
157.38
158.49

Ring (HF)
Bowl (HF)
Cage (HF)
Ring (LDA)
Bowl (LDA)
Cage (LDA)

'Reference [1].
"Reference [5].
'G. Galli (private communication).

83.37
82.58
80.01

155.31
157.40
158.90

83.08
82.55
79.79

155.33
157.68
158.99
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although B-PW91 and B3-PW91 yield different orderings
of the cage and the ring. The overall performance of the
gradient corrected functionals is difficult to judge consid-
ering the differences between the functionals used.

On the purely practical level of computational demands
and feasibility, our calculations have revealed another in-
teresting and quite remarkable feature of QMC. After op-
timization of the trial function, the VMC runs (error bar
—0.01 eVlatom) did not take much longer than the HF
runs with a 6-311G*basis (using the GAMESS package).
In addition, CCSD(T) runs, which often recover less corre-
lation energy than VMC, were extremely demanding even
for only 10 carbon atoms. For C20, computational barriers
simply prevented us from carrying out CCSD(T) calcula-
tions with a 6-311G* basis set, a modest basis for cor-
relation purposes. By limiting the basis set to cc-pVDZ,
which is qualitatively similar to 6-31G*, Taylor et al. [5]
were able to perform coupled cluster calculations on the
C2o structures. Their results predict the bowl to be most
stable for our geometries, although their extrapolation, to
account for limited basis set effects, places the cage with
the lowest energy. Usually, however, a much larger basis
set is necessary for the CC method to produce unambigu-
ous predictions [15,16] (see also calculations of C4 iso-
mers by Stanton et al. [21]). A comparison of the wave
functions shows clear advantages of the built-in many-
body character of QMC trial functions against the slow
convergence in the basis set expansion of the CC method
(20 VMC variational parameters as opposed to 19.5 X 106
self-consistently and 29 X 10 perturbationally CC varia-
tional parameters [5]).

Finally, we believe that our calculations, which provide
a much cleaner picture of the correlation in these systems,
also show that even for sp systems LDA should be used
with caution, especially when molecular structures with
very different bonding character are studied. At the same
time we do not claim absolute accuracy even in our
QMC approach, as it includes two approximations: the
fixed-node error and projection of the nonlocal part of
pseudopotentials in the DMC method [8]. We estimate
from calculations of smaller carbon systems, including
the hydrocarbons, that the amount of valence correlation
energy which is recovered by the DMC method is about
95%. However, all indications which we have so far
show an increase in accuracy by a factor of 5 to 10 when
compared with mean-field methods (which are the only
practical alternatives for larger systems). We consider the
results to be an important step forward in understanding
molecular carbon and its bonding capabilities.

Ring
Bowl
Cage

0.00
—3.18
—4.28

0.00
1.07
3.43

0.00
0.40
2.33

0.00
—0.47

0.31

0.00
—0.82
—0.10

TABLE IV. Relative energies (eV) of Czo isomers with dif-
feI ent functionals.

LDA B-LYP B3-LYP B-PW91 B3-PW91

Further, we believe that our calculations convinc-
ingly demonstrate the importance of high accuracy treat-
ment of the correlation. Because molecular carbon is
so abundant and so important in many disciplines such
as organic chemistry and biology, additional research in
this direction can bring far-reaching consequences. It
is evident that these carbon systems provide an excel-
lent "laboratory of electron correlation, " especially for
testing new methods. To facilitate this for other re-
searchers, the geometries, basis sets, energies, and other
relevant data are available on the world wide web at
http: //www. ncsa. uiuc. edu/Apps/CMP/c20. html.
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