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Hexagons, Kinks, and Disorder in Oscillated Granular Layers
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Experiments on vertically oscillated granular layers in an evacuated container reveal a sequence of
well-defined pattern bifurcations as the container acceleration is increased. Period doublings of the
layer center of mass motion and a standing wave instability interact to produce hexagons and more
complicated patterns composed of distinct spatial domains of different relative phase separated by kinks
(phase discontinuities). A simple model displays quantitative agreement with the observed transition
sequence.

PACS numbers: 47.54.+r, 83.10.Ji, 83.10.Pp, 83.70.Fn

The transport, mixing, and segregation of granular ma-
terials is important in industries ranging from food to min-
eral processing, yet a basic understanding of the physical
mechanisms underlying the collective dynamics of grains
is lacking. Recent experiments on vertically vibrated
granular materials show a variety of phenomena includ-
ing heap formation and convection [1,2], size segregation
[3], and traveling waves [4]. These phenomena, although
of practical importance, are caused by surrounding gas
and/or sidewall driving [5], leaving open the question of
whether there is any intrinsic self-organized behavior in
these systems. We report here robust patterns that arise
spontaneously, not from interstitial gas or sidewall forc-
ing, but from correlations induced by multiple collisions
between the grains and by the coherent motion of the par-
ticle layer and the container.

Our experiments on vertically vibrated granular layers
yield spatial patterns composed of standing waves that
oscillate at either one-half or one-quarter of the drive fre-
quency f . Spatial domains of different relative phase sepa-
rated by phase discontinuities (kinks) appear in all patterns
except those just beyond the initial instability. Examples
of stripes, squares, hexagons, kinks, and a disordered state
are presented in Fig. 1. Figure 2 shows the stability region
for each pattern as a function of f and the dimensionless
acceleration amplitude I = 4' f A/g, where 2A is the
peak-to-peak amplitude of the sinusoidal displacement of
the container and g is the gravitational acceleration. The
transitions are well defined, only weakly dependent on f,
and nonhysteretic (except for the transitions to squares).
We will now describe the experimental methods and then
show how the patterns and their associated thresholds arise
from the interaction of two distinct mechanisms: a stand-
ing wave instability [6,7] and period doublings.

A layer of 0.15—0.18 mm diameter bronze spheres is
placed in the bottom of a cylindrical container that has in-
ner diameter 127 mm and height 90 mm; the wall and lid
are Lucite while the base is aluminum to reduce electro-
static effects. The layer is 7 particles deep except for the

data shown in Fig. 3, where a thicker layer (12 particles
deep) improves the signal-to-noise ratio for the accelera-
tion measurements. The container is evacuated to 0.1 Torr,

FIG. 1. Patterns in a 1.2 mm deep layer at f = 67 Hz:
(a) f/2 stripes (I = 3.3), (b) f/2 hexagons (I = 4.0), (c) tlat
with kink (I = 5.8), (d) competing f/4 squares and stripes
(I' = 6.0), (e) f/4 hexagons (I = 7.4), and (f) disorder
(I = 8.5).
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FIG. 2. Stability diagram showing transitions in a 1.2 mm
deep layer. The vertical dashed lines indicate the frequencies
above which only stripes appear in the square or stripe regime.
Closed (open) square and circular symbols denote transitions
with increasing (decreasing) 1 .

a value at which the volumetric effects of the gas are negli-
gible [5] and heaping is not observed. An electromechani-
cal vibration exciter drives the container, and the resulting
acceleration is measured to a resolution of 0.01g. Patterns
are illuminated at low angle with a strobe light and are
recorded with a video camera located above the container.

The instabilities leading to the different patterns can be
understood in terms of two dimensionless parameters that
characterize the dynamics of the layer: r = ft&i, , the layer
free-flight time, and y = v, /gt&&, , which is approximately
the acceleration of the granular layer relative to the plate
during the time of collision (v, is the relative collision
velocity) [8]. We directly measure r, while we deduce y
from a simple one-dimensional (1D) madel of an inelastic
ball on an oscillating plate. Figures 3(a) and 3(b) show
the dependence of r and y on the driving acceleration I,
and Table I indicates how the patterns can be characterized
by the values of r and y/y„;&,where y,„;,marks the onset
of standing waves.

In our model system the ball is completely inelastic,
because the collisions of the particle layer and container are
almost completely inelastic due to multiple internal grain
collisions. The ball motion is computed [9] by assuming
that free Bights begin whenever the ball and plate are in
contact and the plate acceleration a(t) ( —g. Figure 3(a)
compares the calculated flight time ~„j,with the measured
liight time r,„z,as a function of I . [Figures 3(c) and

0
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FIG. 3. Comparison of observations for a particle layer to
calculations for a model consisting of a 1D completely inelastic
ball. (a) Flight times for the layer (1.9 mm deep, f = 67 Hz),
r,„~,(4), and for a completely inelastic ball, r„i,(0). (b) The
dimensioniess layer collision acceleration y/y, „;,(the average
value is displayed where y is multivalued). (c) Container
acceleration (collisions removed). (d),(e) Impact acceleration
for stripes (I' = 3.3) and hexagons (I' = 4.2), respectively
(vertical arrows indicate successive collisions of regions with
the same relative phase).

3(d) indicate how r„z,is measured. ] In the absence
of standing waves, the layer and ball motions are nearly
the same: ~, pt

= 'T„~,. When standing waves are present
the layer is dilated at takeoff, which reduces the effective
takeoff velocity of the layer and consequently decreases

Since y is calculated from model values of v, and

tf]t it is only accurate when standing waves are absent

(y ( y„;&). Because v, and tt«are both proportional to
1/f, y is independent of f; this is consistent with Fig. 2,
which shows that the standing wave transitions depend
only weakly on f

For I ) 1, on each cycle the layer loses contact and
later collides with the container. However, it is not until
I = 2.4 that the standing wave instability first occurs
(y = y„;,) and the tlat layer bifurcates to wave patterns
oscillating at f/2, as shown in Fig. 1(a) [10]. Vertical
lines extending from Fig. 3(a) to Fig. 3(b) mark the experi-
mental values of I where transitians associated with the
standing wave instability occur. The patterns are squares

TABLE I. Patterns and their associated instabilities.

Pattern

Flat
f/2 squares or stripes
f/2 hexagons'
Flat with kinks
f/4 squares or stripes
f/4 hexagons'

'Effective two-frequency forcing.

Instability

None
Wave

Wave and period-2
Period-2

Wave and period-2
Wave and period-4

+expt

&1
&1

),(1
)1
)1

), (2

y/ycrit

&1
)1
)1
&1
)1
)1
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for f ( 24 Hz and stripes for f ) 40 Hz (Fig. 2); at
intermediate values of f, both patterns compete. For
squares the difference between the stability threshold for
increasing and decreasing I is about 20%, while for stripes
the hysteresis is small and perhaps even zero.

Hexagonal patterns arise spontaneously from squares or
stripes when the vertical motion of the layer undergoes a
period doubling bifurcation. Period doubling occurs when

pt exceeds unity and subsequently becomes double val-
ued [see Fig. 3(a)]. As Fig. 3(e) shows, alternate colli-
sions now occur before and after a, = —g; the layer is
effectively forced at both f and f/2 because successive
collisions occur with different v, and tfit. Like squares
and stripes, hexagonal patterns return to the same configu-
ration after two periods but with an important difference:
time translation by one period is no longer equivalent to
a spatial shift of one-half wavelength. Instead, two dis-
tinct patterns appear in alternate cycles —a set of isolated
peaks on a triangular lattice become, on the next oscilla-
tion, hexagonal cells, each one centered on a former peak
location. The amplitude of the cellular phase is maximum
at the end of the long Dight, while the amplitude of the
peaked phase is maximum at the end of the short Dight.
Figure 2 shows that the I value for transition to hexagons
(I = 3.9) is nearly constant for frequencies above where
the square or striped patterns show a strong decrease in
hysteresis.

Spatial kinks separating domains of different relative
phase appear at the period doubling bifurcation. Kinks
arise because the period doubled motion is degenerate by
~ in phase: a portion of the layer can begin its motion
on one cycle or the next. For hexagons, this degeneracy
manifests itself in the simultaneous appearance of both
peaked and cellular spatial domains separated by a well-
defined phase defect, as shown in Fig. 1(b).

As I is increased further, the amplitude of the hexago-
nal pattern decreases until y/y, „;,( 1 and standing waves
disappear. The layer now consists of flat domains con-
nected by a kink, as shown in Fig. 1(c). Physically, this
resonance corresponds to v, = 0: the layer lands gently
on the plate. Flat domains with kinks arise solely from the
period doubling instability and appear to be the 2D analog
of the 1D subharmonic instability in a glass bead layer re-
ported by Douady, Fauve, and Laroche [11].

Beyond onset of the Hat domains with kinks, 7.„ptis
double valued as for the hexagonal patterns, but as I
is increased the time of the shorter flight goes to zero
and ~„p,again becomes single valued. In both cases
the motion is period doubled: In the former, flights
are composed of long and short jumps (effective two-
frequency forcing), while in the latter, flights can begin
on one cycle or the next, but the time between successive
collisions is always 2/f. In this latter state, r,„z,= r„&„
indicating that the layer is compact at takeoff.

Square and striped patterns reappear when again
y/y„;, ) 1 at I = 5.7. Because the time between
collisions is two periods the standing waves oscillate at
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f/4 and, as Fig. 1(d) shows, appear in separate domains
whose motions differ in phase by m (one domain is
taking off while the other is in midflight). Otherwise f/4
squares and stripes are the same as their f/2 counterparts:
the transition is accompanied by a decrease in ~„ptwith
respect to ~„&„andsquares appear subcritically at lower
f, while at higher f stripes occur essentially without
hysteresis.

Although the layer motion is period doubled for f/4
squares and stripes, hexagons do not appear because 7 pt
is single valued; the layer experiences the same condi-
tions on consecutive collisions. However, when ~„p,) 2,
the layer motion undergoes a second period doubling—
effective two-frequency forcing (now at f/2 and f/4) is
restored and hexagons reappear. Figure 1(e) shows that
four different phases simultaneously exist in the system;
each phase present before the second period doubling sup-
ports two separate phase domains of hexagons. As Fig. 2
indicates, the transition to f/4 hexagons is apparently
nonhysteretic.

The layer becomes spatially and temporally disordered
for I = 7.6. Disorder is introduced by circular regions
approximately three cells in diameter, which randomly
appear in the hexagonal patterns and then shrink and
disappear over the course of approximately 50/f The.
circular regions are 7r/4 out of phase with the domain
that contains them and result from a single flight of
rf]t 1/f, instead of trI, = 2/f as for the rest of the
domain. For V ( 7.8 the four phase domains associated
with the hexagonal pattern remain intact. However, for
larger I, hexagons and the boundaries between the stable
domains disappear; the layer consists of numerous small
domains of wavelike structures with short spatial and
temporal correlation [see Fig. 1(f)]. The disordered state
persists up to I = 14, the largest forcing examined.

The ordered patterns we observe in granular media
have similarities with those in vertically oscillated fluids
(Faraday experiment) [12], but an important difference is
that period doubling, which is not observed in fluids, leads
to domains with different phase in the granular layer.
With this exception, it appears that the factors determining
pattern selection in the two media are similar even
though, because of free fiights and collisions, the effective
forcing of the granular layer is different from the smooth
parametric forcing of the fluid. Dilation of the granular
layer appears to be analogous to the inverse of viscosity
in fiuids because in the granular system we observe f/2
squares for large dilation and stripes for small dilation,
while in fluids squares are observed for small viscosity
(less than 0.7 cm /s) and stripes for large viscosity [12].
In the Faraday experiment hexagons appear when the
container is externally driven simultaneously at both f
and f/2, but only for certain ranges of the relative
phase and amplitude of the two drive signals; if the
phase difference is too small, squares are observed [13].
Hexagons appear in the granular layer when the intrinsic
relative phase associated with the effective two-frequency
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forcing is large. In thinner particle layers the transition
to effective two-frequency forcing occurs for smaller I;
consequently, the relative phase between long and short
Bights is smaller, and we observe patterns of squares with
the same peak and cell structure as for hexagons.

The pattern formation phenomena we have described
result from the interaction of standing waves and period
doublings [14]. These mechanisms are characterized by
the collisional acceleration and the dimensionless flight
time, respectively, both of which can be calculated from
a 1D model. We emphasize that the formation of the
granular standing waves depends primarily on the rela-
tive collision velocity and is only indirectly a function
of the acceleration amplitude I . In addition to the re-
sults reported here, we have performed experiments vary-
ing the particle restitution coefficient (0.5—0.95), density
2.3—11.4 gem 3, and size (0.05—3 mm); the layer thick-
ness (2—40 particles) and aspect ratio (2—100); and the
pressure (10 ' —10 Torr). No qualitative changes in the
patterns or their associated bifurcations were observed.
Moreover, in contrast with most other cooperative dy-
namic phenomena in granular systems, we have found
that transition thresholds and pattern organization become
better defined as the pressure is reduced and the ratio of
container size to pattern wavelength is increased; this in-
dicates that interstitial gas and sidewall forcing do not or-
ganize the grain motion. Future work examining basic
transport properties such as viscosity and momentum dif-
fusivity in the robust patterns we have found should have
practical consequences.
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