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Anomalous Scaling of the Passive Scalar
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We establish anomalous inertial range scaling of the structure functions for a model of homogeneous,
isotropic advection of a passive scalar by a random velocity field. The velocity statistics is taken as
Gaussian with decorrelation in time and velocity differences scaling as Ixl t2 in space, with 0 ~ ~ ( 2.
The scalar is driven by a random forcing acting on spatial scale L. The structure functions for the
scalar are well defined as the diffusivity is taken to zero and acquire anomalous scaling for large L.
The anomalous exponent is calculated explicitly for the fourth structure function and for small K.

PACS numbers: 47.27.Gs, 47.27.Te

In 1941 A. N. Kolmogorov [1] argued that in fully
developed turbulence there exists a range of scales where
the velocity structure functions are independent of the
cutoffs provided by the scales of energy pumping and
dissipation. Ever since, a debate has been going on as
to whether there are corrections to the scaling exponents
predicted by Kolmogorov and whether such corrections
depend on the dissipation or the pumping scale or both.

In this Letter we consider a similar question in a simpler
model of turbulent phenomena. The model, which has
attracted much attention recently [2—7], describes the
passive advection in a random velocity field v(t, x) of a
scalar quantity T. The density T(t, x) satisfies the equation

a, T + (v . V)T —vAT = f, (1)
where v denotes the molecular diffusivity of the scalar
T and f(t, x) is an external source driving the system.
We take v(t, x) and f(t, x) to be mutually independent
Gaussian random fields with zero mean and covariances

(v'(t, x)v'(t', x')) = 6(t —t')D" (x —x'), (2)

ix —x'
( f(t, x)f(t', x')) = 6(t —t')CI

L

—= 6 (t —t') CL (x —x') . (3)
The forcing covariance C is assumed to be a real, smooth,
rotationally invariant, positive-definite function with rapid
decay at spatial infinity so that the forcing is homogeneous,
isotropic, and takes place on the ("integral" ) scale L.

The velocity covariance D is taken to mimic the
situation in a real turbulent flow with the structure
function ([v(t, x) —v(t, 0)] ) proportional to Ixl for
~ ) 0. Concretely, we set

D~j( ) D ~k &'(k& + 2)
—(3+~)/2

d3k
x (a'j —I 'aj/k'), (4)(2~)3 '

where the transverse projector ensures the incompress-
ibility of v. The small m is an infrared cutoff making

the integral convergent for 0 ( tc ( 2. Writing D(x) =
D(0) —D(x), we have D'~(0) ~ Dom which diverges
with m ~ 0, but the velocity structure function has a limit

lim D' (x) = Di[(2 + tr)6' Ixl —tax'x Ixl ] (5)
m~p

which is a homogeneous function of x.
I'((2 —

s&) /2)
Di =—

22+rc7r3/2tr(3 + tr)l ((3 + p&)/2)
Dp

and both constants have dimension (length) /time.
We would like to study the statistical properties of the

solutions of Eq. (1) in the regime of small v, small m
(which may be viewed as the inverse of another integral
scale), and large L. In particular, the universality question
for the passive scalar may be formulated as inquiring
about the existence of the limit of the correlation functions
(Q„T(t„,x„)) in a stationary state of the system when
v, m, L ' ~ 0 and about the independence of such a
limit of the shape of the source covariance C. We
will show that the model possesses an "inertial" range
of scales (v/Di)'j « Ixl « min(L, m ') where these
correlators become independent of v, have a limit as
v ~ 0 and m ~ 0 (independent of the order), but in
general have nonuniversal (i.e., dependent on the forcing
covariance) contributions involving positive powers of L.
In particular we show that the structure functions

S2+(x) —= (lT(x) —T(0)J' ) —y2~(L/Ixl)'"Ixl" '
(6)

for Ixl « L in the v, m = 0 limit. The amplitudes y2~
are ~ and C dependent and the anomalous exponents p2~
depend on t~ but not on C. We find that p2 = 0 but

4
p4 ——

s ~+ 6(sc)
for ~ small. [A similar calculation in general space di-
mension d ~ 2 gives p4 = 4/(d + 2)~ + 6(~ ), which
is consistent with the 1/d analysis of the final version of
[5].] The Holder inequality implies that p~ is a convex
function of N. It follows that all p2~ for N = 2, 3, . . .
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are strictly positive [p2)v ~ (N —1)p4] and that they in-
crease with ¹ Thus structure functions of order 4 and
higher exhibit anomalous scaling and have explicit inte-
gral scale dependence. The value (7) differs from the pre-
diction of [2] which gives p4 = 1 —7tr + 6(~ ).

It should be stressed that our results have not been
obtained by a perturbation expansion in powers of K

applied directly to 52&(x). This would be a wrong
strategy: Physically, the K ~ 0 limit corresponds to
a purely diffusive regime rather than to a Aux phase
appearing for K ~ 0; mathematically, the K ~ 0 limit
does not commute with the L ~ ~ one. Instead, in a
renormalization group spirit, we apply the perturbation
expansion in K to a properly identified single scale
problem where it is under full control.

In the stationary state the scalar correlations satisfy
linear partial differential equations (PDE s) [8,9]. In the
presence of the UV and IR cutoffs v and m, L they
have well defined representations in terms of the Green
functions of the corresponding differential operators which
we now recall (for more details, see [10,11]). Suppressing
the spatial variable, the solution of Eq. (1) with the initial
condition To at t = to takes the form

T(t) = R(t, tp)Tp + R(t, s)f(s) ds,

(T(t)332) t(t tp).782 T(t )332 +—— (t s)M2C——

(12)
When tp ~ —~, the term with T(tp) disappears due to the
positivity of W2 and we obtain for the steady state

(T ) = 382 'CL. (13)
Because of the translational invariance of C, D'~ (0)
(divergent when m ~ 0) will not contribute to (13):

where R(t, tp) is given by the time ordered exponential
(t —tp)

f [vt3 +v(3-) V)d3-Rt, tp='2e (9)
Thus to calculate the correlations of T we need to evalu-
ate expectations of products of matrix elements of R(t, tp)
Using the tensor product notation R(t, tp) as a book-
keeping device for all such products, one obtains

(R (t t )
43N

) (t Ep) 943v (10)
where QADI~ is the differential operator

N
= —P[ S„+ n" (0)a-, , a, ]

n=1

g X7"(x„—x„)B, 8 3 . (11)
n&n'

The Gaussian integral of the time ordered exponentials is
calculable due to the independence of v's at different times.
The 227 ~(0) term is the contribution of contractions
within a single R and the last terms come from contractions
between different R's.

To get hold of the steady state of the scalar, let us first
consider the two-point function. From (8), we obtain

commutes with (three-dimensional) translations and in the
action on translation-invariant functions of xi —x2 = x
reduces to

382 = —2vh —27 "(x)a;8, . (14)

Since X)'~(x) —= 23'~(0) —I)'~(x) has an m ~ 0 limit
given by (5), so does the operator 382 in the action
on translation-invariant functions and when v ~ 0 it
becomes a singular elliptic operator 942' = —D)[(2 +
+)P'J

~
x (

—pc~'x~ [x
~ ]8,8J'. It is now easy to analyze

(13) as the various cutoffs v, m, L are removed using
the rotational invariance of 382. In the m ~ 0 and
v ~ 0 limits (which commute, we could also take m
proportional to L ' with no loss), one obtains for the two-
point function F2(~x~) = (T(x)T(0))

F,(r) = 7,L'
22e r2 K 1+6

3(2 —~)D, 1.2)

(15)
where y2 is a nonuniversal (i.e., C-dependent) constant
and e = 2C(0) is the energy dissipation rate of the scalar.
Note that the nonuniversal term (a constant) is annihilated
by W2'. This has to be so if the equation Wz'F2 = CL,
is to be satisfied: The right-hand side (RHS) becomes
universal in the limit L ~ ~ so all nonuniversal terms
in F2(r) surviving in this limit have to be annihilated by
942'. A similar mechanism will work for higher point
functions. The constant term of F2 drops out from the
second structure function which has a universal L ~ ~
limit so that the exponent p2 = 0. The same universal
result holds approximately in the whole inertial range
g « r « min(L, m '), where the Kolmogorov scale

Let us now analyze the higher point correlators. Pro-
ceeding as with the two-point function, the steady state
solution in terms of the operators 94Jv follows after some
simple algebra. For the four-point function one gets

(
4

T(X„)) = F4(X3, X3 X3 X4) + F4(X X3 X3 X34)
n=1

+ F4(x), x4, x2, x3)

with the single channel function

F4 = 944 '(382 ' 1 + 1 382 ')Ct. e Ct. . (17)

Expression (17) and its higher point counterparts [11]
involving the Green functions of higher 382)v's are well
defined for p, m, L ' nonzero and we need to discuss their
limits as these cutoffs are removed.

The main points of this analysis are the following.
Acting on translation-invariant functions, Mtv becomes

N

M~ = —v g 6, + g 23'~(x„—X„3)B, 6 3 (18)X
n=1 n&n'

possessing an m ~ 0 and v ~ 0 limit which is a singular
elliptic operator 3HI'v' It can be sho. wn [10] that the Green
functions occurring in (17) have limits which are well
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defined in the UV and which render (17) finite for L finite
(and similarly for higher point functions). Thus we need
to find the leading behavior of (17) as L ~ ™with M2~
ieplaced by 3Hz~.

Recalling that F2 = 3Hz Cl, it is convenient to view
Eq. (17) as a differential equation for F4 that becomes for
the connected part F4 =—F4 —F2 F2,

3Hz"o = 2DiV'„, V'„, = —2Dihx (23)

~ the zero modes are present and dominate the structure
functions.

At ir ~ 0, D'~ = 2Di6'J [having finite Di requires
the vanishing of D0 as ~ ~ 0 in order to renormalize
the ultraviolet divergence in (4); Do will never show up
below]. We immediately obtain for the ~ = 0 operators

W4F4 = &(F2 F2), (19)

where —5 is given by the sum in (18) with n = 1, 2 and
n' = 3, 4. By (15), the RHS of (19) has a well defined
limit as L ~ ~ given by

= 2D- - 4,0
l~n&n'~4

4

2

g lxl'-~lzl'-~
9(2 —~)zD',

(20)
= —D]

n=1
X„ (24)

2Dl(~X + ~Y + ~Z ~x ' ~Y ~Y ' ~z)
and is a homogeneous (rotationally invariant) function
of X —= x~ —x2, Y =— x2 —x3, and Z —= x3 —x4 of
degree 2 —~. One easily checks that

F4' (lxl'~'-~& + lzl'~'-~l)
6(2 —~) (5 —&)Di

2

, Ixl'-. Izl' (21)
9(2 —~)2D',

solves the limiting case of Eq. (19). We deduce that
~4'(F4 —F4'") ~ 0 as L ~ ~. By scale invariance,
it is thus reasonable to conclude that the solution for finite
but large L should differ from the universal scaling form
by zero modes of 944' so that

F4 — L~'" P y, F4„~F4', (22)
0~p4 „~2(2—K) m

where F4„are homogeneous zero modes of W4' of
degree 2(2 —sc) —p4„and the nonuniversal coefficients
y„depend on the source covariance C .

In fact, using spectral analysis of 384 [10], (22) can
be made rigorous. Similar analysis can be repeated for
N-point correlators: Nonuniversal L-dependent terms
proportional to homogeneous zero modes of 3HJ'v' can.
be present in the large L asymptotics. We thus face
the problem of finding such zero modes, of determining
whether they are present in the N-point function of T, and
finally of finding whether they contribute to the structure
function S~. We will now show that at least for small

—R' (Y + Z) + R' (Y)]ax az . (26)

We shall search for the homogeneous zero modes of
W4' symmetric under three-dimensional translations and
rotations and under permutations of four points, which is a
standard and mathematically sound perturbative problem
for operators with discrete spectrum. The symmetric zero
modes of the lowest homogeneity of 384'0 occur in degree
zero (constants) and in degree four. The latter has the
form

in the difference variables X, Y, and Z and using the sub-
script to refer to ~ = 0. In fact, the higher point correla-
tors reduce at ~ = 0 to the standard Gaussian expression
with sums of products of the two-point functions.

We shall find the homogeneous zero modes of the
operator 384' in perturbation expansion in powers of

Equation (5) implies that (for I = 0) D'j(x) =
2Di[6" + I~R'~(x)] + 6(~ ) with

R'J(x) = 6'~(z + lnlxl) —zx'xjlxl . (25)

Hence, to the first order in I~, 384' = W4'o + 21'Di V4,
with

V4 = —R' (X)&~ &xi —R"(Y)&r &r~ —R"(Z)&z &z~

—[R'~(X + Y) —R'j(X) —R'~(Y)]Ax Byi

—[R' (Y + Z) —R' (Y) —R' (Z)]By Bz

—[R' (X + Y + Z) —R' (X + Y)

a g(x„—x„) +b P (x„—x ) (x„—x )
(n, n') ((n,m), (n, m'))

+ c
((n, n '),(m, m'))

(x„—x„) (x —x ) = aFi + bFz + cF3, (27)

where the pairs (n, n') and (m, m') are assumed different,
as well as the pairs (n, m) and (n, m'), and where 10a +
14b+ 3c =0.

The constant survives as the eigenvalue of W4' for
~ 4 0. Thus we need to calculate in degenerate perturba-
tion theory how the fourth degree zero modes change with

2Di
R2

2D&

R8 BgR (28)

K. For this we write W4'p = 2Di(kx + Av + Az),
where X = X, Y = ~2(Y + 2X + 2Z), and Z = Z.
Denoting R = (Xz + Y2 + Zz)i~2 = [& g&„„,1(x„—
x„) ]'~z, we obtain
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—15$(a1f1 + a2f2) —44f3 —@f3
1+
2 V4R (at fl + a2f2) (31)

Upon taking the L2(S ) scalar products with f12, f3 drops
out resulting in the relation

( 1—15k g (f;,fJ1aj + g I f;, V4R"fJ)az = 0.
j=1,2 j=1,2' k

(32)
For the explicit calculation we took R f1 = 3F1 —10F3
and R f2 = 7F1 + 5F2 —The int. egrals over the eight-
dimensional sphere are most conveniently done by using
homogeneity to transform them to Gaussian integrals over
R . The integration is straightforward with MAPLE and the
matrix in (32) becomes proportional to

& —52 —25A
18 + 153

15 + 15k
—20 —20A j

with the eigenvalues A1 = —14/5 and A2 = —1.
The corresponding eigenfunctions (29) are F4 1

= R + / + [F1 —2F2 + 6F3 + 6(K)] and
F42 ——R +@( )[—7F + 5F2 + 6(K)]. The 6(K)
contributions Kf3 may be calculated from Eq. (31) and are
continuous functions on Ss (no logarithmic divergences).
The latter holds to all orders and also nonperturbatively
for small ~ allowing conclusions about the four-point
functions with coinciding points like S4(x).

For large L the connected four-point function takes the
form

C

T(x ) L4 2K + L4K/5+—6(K )Fcxn +4,0 +4, 1 4, 1

I —~+6(~')FcP4,2 4,2 (33)
4 C,SC

+ T(x„) + 6[(L/R) + ( )]
n=1

uniformly in small ~. Since the connected correlation
2

vanishes and „1Tx„'" reduces to 36po2 3F1
1

10F3) for K = 0, we infer that y4 o = 6 (K), y4, 1
=

+ 6 (K), and y4 2 =, + 6 (K). The result
I

2

(6) for N = 2 follows with y4 =
3&2 + 6(K) and p4

where 4 is the Laplacian on the sphere S" in the space
of (X, Y, Z). Now pick two linearly independent zero
modes R f;, i = 1, 2, of the form (27) and look for a
homogeneous zero mode

R + ( )([a + 6(K)]f
+ [a2 + 6(K)]f2 + Kf3 + 6(K )1 (29)

with a homogeneous degree zero function f3 orthogonal to
f12 in L (S ). We obtain in the linear order in K

3414'o[AR lnR(a1f1 + a2f2) + R f3]
+2D1V4R (a1f1 + a2f2) = 0, (30)

or, using the form (28) of W4'o,

given by (7) since only the F41 term gives nonzero
contribution to the structure function. The zero mode
F42 corresponding to A = —1 is actually obtained from
a zero mode of 383 by extending it to a function of
four x s by symmetrizing. This is a general feature:
Zero modes of M~ give rise to zero modes of M2~
for 2N ~ N'. These, however, do not contribute to the
structure functions S2&. The only zero mode of 942jv that
contributes is the unique one not coming from the lower
dimensional 38~ 's, the one that at K = 0 is obtained from
the monomial p; 1(x2; 1

—x2;) by symmetrizing and
subtracting partial traces. It gives rise to the dominant
contribution to 52& which has to be present by the Holder
inequality. In particular, all exponents p2& should be
6(K) for small K.

The asymptotic behavior of the scalar correlation func-
tions encodes subtle information about the behavior of the
Green functions of the singular multibody operators 3VIfv

with continuous spectrum. The reduction of its study to
that of discrete spectrum operators given by 3Hfv's acting
on homogeneous functions should be thought of as realiz-
ing a renormalization group type approach to the model,
with the homogeneous zero modes of Mfv playing the
role of relevant interactions. This may be the most impor-
tant hint from the above exact solution for the anomalous
scaling of the passive scalar.

We would like to thank the Mittag-Leffler Institute,
where this work was started, for hospitality. Discus-
sions with Michail Chertkov, Gregory Eyink, Grigori
Falkovich, Uriel Frisch, Robert Kraichnan, Aleksander
Polyakov, Itamar Procaccia, and Achim Wirth are ac-
knowledged. We thank Ezra Getzler for writing the pro-
gram in MApr E for us. A. K. was partially supported by
NSF Grant No. DMS-9205296 and EC Grant No. CHRX-
CT93-0411.

[1] A. N. Kolmogorov, C.R. Acad. Sci. URSS 30, 301—305
(1941).

[2] R. H. Kraichnan, Phys. Rev. Lett. 72, 1016—1019 (1994).
[3] V. S. L'vov, I. Procaccia, and A. Fairhall, Phys. Rev. E

50, 4684 —4704 (1994).
[4] A. Majda, J. Stat. Phys. 73, 515—542 (1993).
[5] M. Chertkov, G. Falkovich, I. Kolokolov, and V. Lebedev,

Weizmann Institute Report No. chao-dyn/95030001.
[6] A. L. Fairhall, O. Gat, V. L' vov, and I. Procaccia,

"Anomalous Scaling in a Model of Passive Scalar Ad-
vection: Exact Results, " Weizmann Institute, 1995 (to be
published).

[7] R. H. Kraichnan, V. Yakhot, and S. Chen, Phys. Rev. Lett.
75, 240 —243 (1995).

[8] U. Frisch (private communication).
[9] R. H. Kraichnan, Phys. Fluids 11, 945 —963 (1968).

[10] K. Gawqdzki and A. Kupiainen (to be published).
[11] K. Gawqdzki and A. Kupiainen, Report No. chao-dyn/

9504002.

3837


