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Decoherence, Continuous Observation, and Quantum Computing: A Cavity QED Model
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We use the theory of continuous measurement to analyze the effects of decoherence on a realistic
model of a quantum computer based on cavity QED. We show how decoherence affects the

computation, and methods to prevent it.
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The preparation and coherent manipulation of N-atom
entangled states is fundamental to realizing a quantum
computer [1] is the basis of tests of quantum mechan-
ics vs local realists’ theories [2], and promises a novel
atomic spectroscopy with resolution better than the stan-
dard quantum limit [3]. In a quantum computer (QC), in-
formation is stored in a quantum register composed of N
two-level systems representing the quantum bits (qubits),
and the general state of the QC is an (entangled) linear
superposition of their states. QCs can perform certain
classes of computations exponentially faster than any clas-
sical machine [1,4]. Such a device should be able to per-
form arbitrary unitary operations on the quantum register,
which can be decomposed into a sequence of steps involv-
ing the conditional dynamics of a few qubits (quantum
gates) [1]. Given that a QC allows one to perform any
desired operation on the qubits, building a QC is equiva-
lent to building an N-atom quantum state synthesizer.

As yet few practical proposals for the realization of
quantum gates [5] or a QC have been made [6]. First
we need to identify a physical mechanism to entangle
the state of the atoms and perform conditional dynamics
on the qubits in a controlled way. In practice, the
central obstacle is the fragility of macroscopic atomic
superpositions with respect to decoherence by coupling
to an environment [7]. It is thus of crucial importance
to understand the effects of decoherence on a given
computation, and to develop methods to compensate for
and suppress quantum noise in realistic systems. In this
Letter we analyze decoherence within a realistic quantum
optical model, and how its effects can be remedied by
continuously monitoring the decay channels of the QC (in
the sense of continuous measurement theory [8]), and by
astute design of the quantum gate. We emphasize that
in contrast to Ref. [7], where the general scaling of the
errors with the number of qubits was studied, we will
focus on small systems with a few qubits, relevant for
the experimental realization of a first generation of QC
experiments.

Our scheme for the QC is based on a set of N
atoms representing the qubits communicating via their
interaction with a single quantized mode of a high-
Q optical cavity (Fig. 1). We assume that the atoms
are fixed inside the cavity at distances apart much
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larger than the wavelength of the cavity mode and
interacting individually with laser beams, which allows
for sequences of operations between any two qubits and
thus the implementation of a whole quantum network.
The qubits are stored in Zeeman ground state levels of
the trapped atoms. From Ramsey spectroscopy [9] we
infer that decoherence of these levels is negligible in
the present context. Quantum gates are implemented by
coupling atoms to individual lasers and entangling them
by exchange of a cavity photon. Sources of decoherence
are thus the spontaneous emission from the excited state
of the atoms, and cavity decay, during the gate operation.
This is in contrast to the models studied in Ref. [7] where
the decay and decoherence of qubits due to coupling to
an environment was studied. Spontaneous emission can
be significantly avoided by performing this process as an
adiabatic passage via a dark state of the strongly coupled
N-atom + cavity system [10]. Cavity decay is minimized
by having a photon present only during the gate operation.

Damping in quantum optical systems is typically de-
scribed within the framework of master equations, deriv-
ing an equation for the density matrix of the system (the
QC) by tracing over the degrees of freedom of the envi-
ronment. This corresponds to a situation where the decay
of the system is not observed (a priori dynamics) [8]. In
contrast, we will study a situation where the QC is con-
tinuously monitored to detect the photon decays accord-
ing to Fig. 1 (a posteriori dynamics) [8]. This gives a
time evolution of the system conditional to the observed
sequence of photon counts. In the case of unit efficiency

FIG. 1. Schematic representation setup. The arrows indicate
laser beams interacting with individual atoms. D, and Dy
detect cavity photons and spontaneously emitted photons,
respectively.
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detection, this is described by a pure state wave func-
tion for the system evolving according to a non-Hermitian
Hamiltonian which includes dissipative terms. Observa-
tion of a photon corresponds to a quantum jump [8],
which is an incoherent step in the time evolution of the
QC. We emphasize that by observation of “no decay” we
gain information about the system, which is reflected in
some “unwanted” dynamics of the state vector.

We are interested in performing conditional dynamics
by transforming a target qubit conditional to the value of
a control qubit according to [1,5]

le1)l€2) — Seoler) €2 + S 1lenUler)
(Gj = 07 1)7 (])

where U is a unitarity transformation on the second
qubit. Our scheme to implement (1) is based on the
following three steps: (step 1) we map the rwo qubits
le1)|e2) to a single four level system |e; €) = |0 =
00),...,|3 = 11) in atom 2 while leaving atom 1 in state
10), le1)|€2) — |0) €y €2). This mapping is an isomor-
phism H, ® H, — H, ® FH,, where H; denotes the
i-dimensional atomic Hilbert space. (step 2) We trans-
form the states of the target atom 2 according to

le1 €2) — Seoler ) + 861D ler ) (lUle). (2)
B

It is clearly comparatively easy to manipulate single
atoms, which is the advantage of transferring the infor-
mation of both atoms to a single atom. (step 3) Finally,
the inverse of step one is performed. We note that if
in the second step we interchange [2 = 10) « |3 = 11),
the total operation corresponds to a controlled-NOT gate
ler)le) — ler)|er @ €2) [1,5].

We now demonstrate that Zeeman coherence between
ground state levels can be transferred between two atoms
by employing adiabatic passage via a dark state of
the two-atom + cavity system. This will be the basis
to implement Eq. (1). Consider the A configurations
shown in Fig. 2(a) [10]. The transitions |b); — |c); of
both atoms (j = 1,2) are strongly coupled to the same
quantized cavity mode with coupling strength g. The
transitions |a); — |c); are coupled to separate classical
coherent driving fields with frequency w; and Rabi
frequencies {};. The interaction part of the Hamiltonian

(a) atom 1 atom 2 (b) atom 1 atom 2
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FIG. 2. (a) Transfer of atomic coherence between two A

systems. (b) Transfer of two qubits to a single atom (four-
level system).

is given by (A = 1).
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+ H.c.,

where b is the annihilation operator of a cavity photon.
This Hamiltonian has dark eigenstates, i.e., superpositions
of Zeeman ground states which by quantum interference
are decoupled from the excited states. We are interested
in dark states which contain the vacuum state of the cavity
|0).. Assuming Raman resonance conditions between the
two ground states [10] we find

Do) = |b,b,0) = |b)(1b),]0)., 3)
D) =« Qiglb,a,0) + Qagla,b,0) — Q,Qx|b,b,1).

The possibility of coherence transfer arises from the
following behavior of the dark state |D;): [D;) — |b,a,0)
for Q,/Q, — 0, and |D;) — |a, b,0) for Q;/Q> — 0;
that is, if we apply a ‘“counterintuitive” pulse sequence
where the pulse on atom 2 precedes the pulse on atom 1,
i.e., leading from Q,/Q > 1 to Q,/Q, > 1 [10] with
g = const, an adiabatic transfer of the dark state between
the two limiting cases of |D;) may be achieved. This
requires g7, );T > 1 with T the laser pulse duration, as
well as the conditions for the observation of vacuum Rabi
splitting [11], g,Q; > «,I", with « and I' the cavity
decay and atomic spontaneous emission rates, respectively
[12]. In particular, we can transfer atomic coherence via
a superposition of |Dg) and |D;) according to (Ala); +
B|b)1) |b)210). — |b)1(Ala), + Blb),;)|0)., where A and
B are arbitrary coefficients. Important features of this
scheme are as follows: (i) The excited states are (in
principle) never populated and thus the transfer is immune
to spontaneous emission; (ii) the interaction can be
resonant throughout the transfer, and thus there will be
no phase shifts; (iii) the interaction times do not need
to be adjusted very accurately as long as the adiabaticity
condition is fulfilled; and (iv) cavity decay can occur only
for the short time the intermediate state |1). is populated.

In order to perform quantum gates we require atoms
with more degrees of freedom. In Fig. 2(b) we have
plotted the internal structure of two of the atoms of the
QC. To keep the method valid for a general atom, we
have plotted only the internal levels of each atom that are
relevant for the operations. The atoms thus consist of two
hyperfine ground levels (la); and |b);) and one excited
level (Ic);). Each of these levels is doubly degenerate
(we denote by the subscripts — and + two different
magnetic quantum numbers). The cavity mode is on
resonance with each |b) — |c) transition with coupling
strength g, whereas the |a) — |c) transitions of each atom
are excited by a different laser beam, with Rabi frequency
€);. Note that each atom consists of two A systems
behaving exactly in parallel, and therefore the above ideas
can be used to transfer coherences between the atoms.
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We now show how a general unitary operation between
two qubits can be performed. First assume that the
qubits in atoms 1 and 2 are represented by levels
[6_); = |0) and |a-); = |1) and levels |b_), = |0) and
[b4)> = [1), respectively [see Fig. 2(b)]. To implement
step 1 we apply a counterintuitive pulse sequence which
leaves the atom 1 in state |0), and atom 2 in one
of the levels |0 = 00),...,]3 = 11) [for the notation
see Fig. 2(b)]. The conditional dynamics (step 2) are
performed as a one-atom operation (Raman transition
with two lasers), and, finally, the qubits are transferred
back to the two atoms (step 3). In our QC model,
the qubits are stored in the lower ground levels of
each atom ({|1),|0)} = {la-).la+)}). Every time one has
to implement conditional dynamics between two given

atoms, the qubits are first transferred to the appropriate
levels in each atom in order to apply the above method.
At the end of the operation, the qubits are transferred
back to the original levels. These steps prevent atoms
extraneous to a given operation from being affected by
the presence of a cavity photon. They will be in levels
la);, which do not interact with the cavity mode.

The time evolution of the QC is described by the
following master equation:

N

p(1) = —i[Aee()p — pHeitO 1 + D Jrjp + Jeb
j=1

)

where, in the interaction picture and on resonance,

|

. - r
Hepe = —ixbth — i—2— Z Z lck>j_,-<ck| +
J=lk——+

is a non-Hermitian Hamiltonian including decay terms
from spontaneous emission and cavity decay. The super-
operator Jr; describes the return of the electron to the
atomic ground states after a spontaneous emission, and
J« the corresponding term for the cavity decay (quantum
jump) [10]. The time evolution of the QC conditioned to
no photon decay occurring is given by the pure state wave
function

W (1)) = Uere () 1 (20))/ 1Tt (0) 1 X (DI, (6)

where Uer(t) = T exp[—i f;o dt Heer(1)] with T the time-
ordering operator, and |W(¢y)) the initial state.

According to Eq. (6) the dynamics of the present
model for step 1 in the quantum gate operation is
to a very good approximation described by Ues:
le1) |€2) — e~ 2€1]|0) |€; €3), where A is a damping con-
stant whose detailed dependence on the damping parame-
ters, etc. [12] is not relevant for the following discussion.
Note that only the component of the wave function
with €; = 1 experiences damping, since this is the part
undergoing transfer of coherence between the atoms via a
cavity photon in the dark state |D;). This illustrates that
even in the case of selecting computer runs with no decay,
damping will distort the dynamics of the QC. In the
present example, for the complete gate operation, Uess:
ler) le2) — Seoler)|€x) + e 22 5¢,1l€1)Uler). This er-

WD

j=lk=—+

(2j(t)
2

We have studied numerically the error accumulated
by repeated application of a controlled-NOT gate to two
atoms prepared in the product state (|0) + [1)) (|0) +
[1))/2, for the different scenarios described above. In
Fig. 3(a) we plot the probability P.x of finding the system
in the exact state (ideal gate) against the number of gate
operations M when cavity loss is the dominant decay
channel. As the figure shows, the runs corresponding to
no photons detected (solid line) have a smaller error than
the others, although it is still important. These results
can be dramatically improved by designing the controlled-
NOT gate with “equalized damping” [Fig. 3(b)]. If there
is no detection of photons, there is no improvement
compared to the case without error correction (dash-
dotted line). However, if we detect all cavity photons
(dashed line), this method prevails over the corresponding
situation in Fig. 3(a). For this method, note that if all

lewial + £ 1ex)ibelb + He. (5)
2

l

ror due to damping can be avoided, however, by design-

(@)

(b)

X 0.2
ing the conditional dynamics (or quantum gates) in such 2 4 6 8 10 12 14 2 4 6 8 10 12 14
a way that the basis states are equally damped, so that M M
the damping factorizes out in any linear combination, FIG. 3. Probability to measure the correct result P, after

Uerr: €1y l€2) = e MSepler) e + 8e1len)Uler)], so
that upon normalization of the wave function according
to (6) the effect of the damping drops out in the suben-
semble with no decay. This can be accomplished by
swapping [0 €2) < |1 €;) in the atom 2 before the transfer
back (step 3), followed by a corresponding swap in both
atoms after the transfer.
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the application of M controlled-NOT gates. (a) Gate without
equalized damping, (b) gate with equalized damping. Solid
lines: subensemble conditional to no photon emission [Eq. (8)];
dashed line: subensemble conditional to no cavity photon
emission, dash-dotted line: full master equation (6) (no photon
detection). Parameters: I' = 0.02g, k = 0.4g, Q™ = 0.7g,
Gaussian laser pulse shape with a width T = 6g !, and pulse
delay 7 = 6g ', for on-resonance conditions.
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jumps are detected we are close to the ideal limit Pex = 1,
in the parameter range of Fig. 3 (solid line).

We now show how decoherence affects the final result
in a nontrivial calculation. Consider a Fourier transform
(FT) on N = 5 atoms, initially prepared in the periodic
state |W;) « >, |rl + k) with period r and k a random
offset, where in the present example » = 3. Finding
the period r of |W;) by a FT is the crucial step of
Shor’s factorization algorithm, which allows factorization
of large integers in polynomial time [4]. Here, |y)(y =
0,1,....28N — 1) represents the state of the quantum
register, which is expressed in terms of the states of
the five qubits (using binary representation). The FT is
defined as

FT|y) JoN

and can be accomplished by applying a series of one-
and two-bit gates [6,13]. The probability P(y) of mea-
suring the state (y) after the FT is plotted in Fig. 4,
where the shaded bars represent the exact result P(y) =
Ky|FT|¥;)|?. The period r can be read off from the sepa-
ration of the peaks of the Fourier transform. The out-
lined graph in (a) corresponds to the full solution of the
master equation (4) [8]. Although the main features of
the Fourier transform are still clearly visible, we find a
central peak at y = 16, which is a systematic error and
arises due to unequal damping. For the actual parameters,
the ratio of flawless realizations to realizations which un-
dergo one or more quantum jumps is approximately 1:2.
In Fig. 4(b) all erroneous realizations have been rejected,
which results in a significant improvement of the result.
The central peak, however, cannot be removed by this
method. Further improvement is obtained by selecting
the subensemble conditioned to not observing a photon,
and using gates designed such that the damping is equal-
ized [Fig. 4(c)]. In Fig. 4(d) we plot the population of the
basis states where we keep only those realizations which
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FIG. 4. Probability distributions P(y) from a FT on N = 5
atoms. Shaded bars: exact result. Outlined bars: (a) decays
not detected (master equation); (b) subensemble conditioned to
not observing a decay; (c) as in (b) but with equalized damping;
(d) incoherent background. Parameters see text and Fig. 2.

underwent at least one quantum jump (incoherent back-
ground). Surprisingly, we find that the quantum compu-
tation is not destroyed and information can still be inferred
from the result. The mean number of jumps per realiza-
tion is 1.8. We have found that the effect of spontaneous
photons from excited atomic states on the computation is
much more destructive than cavity decay. This is because
after a cavity photon emission the system is still in a dark
state, which is not necessarily true for spontaneous emis-
sion. Thus the atomic excited states can be populated,
which gives rise to further spontaneous photons.

In view of recent experimental progress in optical
cavity QED [11], and of trapping and cooling of atoms
and ions, realization of a QC model as proposed in the
present Letter is likely to be within reach of soon available
technology. We expect that the schemes to minimize
the effects of decoherence as developed in the present
work are generally valid in quantum optical QC proposals,
beyond the scope of the present model.
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