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Experimental Observation of Magnetic Surface Polaritons in FeFq
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We present the first direct experimental evidence for the existence of magnetic surface polaritons
in a uniaxial antiferromagnet. The modes are excited in FeF2 by attenuated total reflection with the
uniaxis along an applied magnetic field Ho. The resonance is observed as an attenuation of the reflected
intensity as the frequency of the far-infrared beam is scanned. We find nonreciprocity between the +Ho
and —Ho spectra as a consequence of the nonreciprocity of the surface polariton modes when Ho is
introduced. We also observe broad dips due to the excitation of bulk modes.

PACS numbers: 75.50.Ee, 75.30.Pd, 76.50.+g, 78.20.Ci

Surface polaritons are now well established as a sen-
sitive probe in surface analysis. The study of surface
plasmon polaritons, for example, provides valuable infor-
mation about material parameters associated with surface
plasma oscillations such as the effective masses of charge
carriers and surface charge densities. This technique has
been applied to studies of metals [1] and semiconductors
and semiconductor superlattices [2—5].

In ferromagnets, the study of magnetostatic surface spin
waves by Brillouin light scattering has yielded important
information on interface exchange constants, bulk and
surface anisotropies, surface magnetization, and spin-
reorientation transitions for thin films and superlattices
[6—9]. In contrast, the experimental study of surface
modes and the surface structure of antiferromagnets has
been almost completely neglected. This is despite the
fact the magnetic surface structure in antiferromagnets
has recently been emphasized in a number of fundamental
works [10], and also has technological importance in the
exchange biasing of ferromagnetic films [11].

We report the first direct experimental observation of
magnetic surface polaritons on the uniaxial antiferromag-
net FeF2 by attenuated total reIIection (ATR). The present
development of ATR for magnetic surface excitations
opens up the possibility of a wide range of experimen-
tal studies of magnetic surfaces in the far-infrared (FIR)
spectral range. This technique should be applicable to
studying surface modes and parameters for a wide variety
of other magnetic materials. These include ferrimagnets,
easy-plane antiferromagnets [12], rare earth magnets with
helical orderings [13,14], and rare earth and antiferromag-
netic superlattices [15].

Magnetic surface polaritons (MSPs) were theoretically
discussed first for ferromagnets [16] and later for antifer-
romagnets [17,18]. Subsequently a large theoretical lit-
erature has appeared [15] but no direct measurements of
MSP have yet been reported. The experiments are chal-
lenging because it is necessary to establish ATR with
high-frequency resolution at low temperatures.

One of the key features to emerge from the theoreti-
cal studies is that MSP propagation is nonreciprocal, i.e.,
reversing the direction of propagation (or reversing the
applied field) changes the ATR rellectively. In our exper-
imental results we indeed find a pronounced nonrecipro-
cal reAectively. In addition, when the applied field Hp is
turned off, the reflection becomes reciprocal as predicted.
This is in contrast to ferromagnets where nonreciprocity
persists even in the absence of an applied field.

The propagation of MSPs is governed by the permeabil-
ity tensor p, (co) representing the long-wavelength response
of the spin system to a driving field at frequency cu. With
the z axis along Ho and the sublattice moments parallel to
Ho, p, has components [19]

&„=1„=1+ 4~y'H, M, (Y + Y ),
p, z

= —p, &
= i47ry HqMs(Y+ —Y ), (2)

with Y — = [co„—(co ~ yHO + iI ) ] ', p,„=1, and
all other components vanish. H~ is the anisotropy field,
Mq the sublattice magnetization, y the gyromagnetic ra-
tio, and I' the damping. co„= y(2HqHF. + HA)'/ is the
antiferromagnetic resonance (AFMR) frequency with ex-
change field HE. We consider MSPs propagating along the
interface y = 0 between vacuum (y ( 0) and the medium

(y ) 0) in the Voigt geometry. This leads to propagation
normal to Ho along the x axis and parallel to the surface
(x-z; plane). The detailed derivation of the dispersion re-
lation is given elsewhere [17,20]. The MSP is found to be
TE or s polarized with the only nonvanishing component
of electric field E along Ho. The implicit dispersion rela-
tion is then

O'vtxo + tx tqp'xy/pxx

with the spatial decay constants

(
2 2/ 2)1/2 (

2 2/ 2)1/2

(4)
where p, v = p,„, + p,, /p, ,„ is the Voigt permeability,
a the dielectric constant of the crystal, and q =

~q~
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FIG. 2. Experimental (solid lines) and theoretical (dot-
ted lines) s-polarization ATR spectra of FeF 2 at 1.6 K
for P = 45, Ho = 0 and gap thickness (a) d = 10 p,m,
(b) d = 16.5 p, m, and (c) d = 18 p, m. Experimental
resolution: 0.06 cm '. The linewidths are instrumental.
Theoretical curves were drawn with e = 5.6, c~ = 11.56,
~„=52.45 cm ', and damping V = 0.05 cm ', as. quoted in
Ref. [21]. The arrow indicates the surface polariton frequency

cusp .
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tungsten wire. A more accurate value of d is determined
by a best fit of the calculated to the measured spectra.

In Fig. 2 we present theoretical and experimental ATR
spectra in zero field at an angle of incidence @ = 45' in

a Si prism and T = 1.6 K. To display the effect of vary-
ing d, three spectra were taken with d = 10, 16.5, and
18 p, m. As d increases the ATR dip is sharpened and
its depth slightly reduced, ruling out the appearance of
broad dips due to MBPs. We plot the theoretical curves
with a = 5.6, slightly different from Ref. [21], since it
is not yet clear what the correct value of e is for FeF2
[26]. The experimental spectra are complicated by in-
terference fringes caused by multiple reflections between
parallel surfaces of optical components, namely, the sides
of the prism and the cryostat windows. Since the prism
replacement accuracy (estimated to be about 200 p, m) be-
tween the background (prism only) and specimen mea-
surements is insufhcient, the fringes are not removed. An-
other consequence is an uncertainty of up to about 20% in
the overall level of the reflectively. To compensate, each
experimental spectrum has been normalized by multiply-
ing each point in the spectrum by an appropriate constant
factor between 0.8 and 1.2 in order to bring the center line
of the fringes close to unity in the region —60—70 cm

Figure 3 shows theoretical and experimental spectra in
fields of 4-3 T, @ = 45', and d = 16.5 p, m. The spectra
can be understood by reference to the ATR scan lines,
Fig. 1(b). In the low-frequency region (~ ( cu ) the
scan lines fall in the lower bulk continuum where the
incident light can generate bulk polaritons and therefore
the reAectivity R ( 1 for both Ho = +3 and —3 T.
This is clearly seen as broad dips. All scan lines then
pass through gaps between the bulk continua where no
coupling to bulk polaritons occurs so that R ~ 1. We
see very sharp ATR dips with linewidths of (0.1 cm ' at
frequencies where the scan lines cross the MSP dispersion
curves. In the high-frequency region (co ) co+) all the
scan lines finally enter reststrahl regions with R ~ 1.
Small broad dips in both spectra correspond the MBP
excitations as the scan lines cross parts of the bulk
continua near ~ and co+. The ~3 T spectra are clearly
different so Fig. 3 gives very clean and striking evidence
of nonreciprocity. The MBP nonreciprocity was first
reported by Remer et al. [27].

In this Letter we have presented experimental ATR
spectra of FeF2, which, for the first time, give clear direct
evidence of the nonreciprocal propagation of MSPs in
uniaxial antiferromagnets. Theoretical spectra were drawn
with the same magnetic parameters obtained in oblique-
incidence reflection experiments [21,22]. The overall
features of both experimental and theoretical results are
in very good agreement. The predicted nonreciprocity
[17,18,28] is markedly displayed in Fig. 3 for Ho = ~ 3 T.
These results establish ATR as a powerful technique for the
experimental studies of MSPs in magnetic materials where
a large amount of theoretical work has been done [15,20].
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We now plan to carry out studies on such materials with
resonances accessible to our instrument.
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