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Determination of Spin- and Orbital-Moment Anisotropies in Transition Metals
by Angle-Dependent X-Ray Magnetic Circular Dichroism
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Angle-dependent x-ray absorption spectroscopy in strong magnetic fields is shown to yield precise site
specific information about spin and orbital moments in highly anisotropic 3d transition metal systems.
A new angle averaging spin sum rule allows for the separate determination of spin and magnetic
dipole moments in lower than cubic site symmetry. The microscopic origin of the magnetocrystalline
anisotropy can be probed directly through the angular dependence of the orbital moment.
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The understanding of magnetic phenomena in thin tran-
sition metal films and multilayers, like giant magne-
toresistance [1] and perpendicular magnetic anisotropy
[2—4], would be greatly aided by a better knowledge
of the microscopic magnetic properties of the materials.
Of key importance is the reliable measurement of ele-
ment specific magnetic spin and orbital moments and their
anisotropies. In thin magnetic films, and at interfaces and
surfaces, all these properties are expected to significantly
differ from those in the bulk [3—5]. In practice, however,
the quantitative determination of magnetic moments and
their anisotropies is anything but simple.

Over the last few years x-ray magnetic circular dichro-
ism (XMCD) spectroscopy has shown great promise as
a quantitative magnetometry tool. In contrast to most
other techniques, it offers element and site specificity, and
the ability to separate the spin and orbital contributions
to the magnetic moment by use of powerful theoretical
sum rules derived in an atomic framework [6,7]. The
sum rules have been tested by band structure calculations
[8,9] and have been verified experimentally for bulk Fe
and Co [10]. While the orbital magnetic moment is di-
rectly linked to the measured dichroism intensity [6], the
determination of the spin moment is complicated by the
presence of a correction term, the magnetic dipole mo-
ment [7], which is known to be sizable in ultrathin films
and at surfaces [9]. So far, the presence of this term has
appeared to limit the quantitative sum rule determination
of spin moments to crystal sites of cubic symmetry.

The present paper shows that, for 3d transition metals,
the spin and magnetic dipole contributions to the XMCD
spin sum rule can be separately determined, for sites with
lower than cubic symmetry, i.e., for all cases with impor-
tant magnetic dipole contributions to the local magnetic
moment. In particular, a new sum rule is derived for
the spin moment only, based on the angular average of
XMCD intensities in an external magnetic field, oriented
along Cartesian axes, sufficiently strong to magnetically
saturate the sample along all directions. The angle ave-
raged XMCD spin sum rule holds remarkably well for
3d transition metals and offers exciting new capabilities

for the study of the anisotropic magnetic properties of
ultra thin films, surfaces, and interfaces. The spin and
magnetic dipole moments can now be quantitatively de-
termined by sum rule analysis of experimental spectra and
compared with moments obtained from electronic struc-
ture calculations. By use of the XMCD orbital sum rule,
the anisotropy of the orbital magnetic moment can also be
determined, and it is directly related to the magnetocrys-
talline anisotropy. Estimates of the size of the expected
anisotropies of spin and orbital moments for ultrathin tran-
sition metal films suggest them to be easily observable in
a suitable XMCD measurement.

The magnetic properties of the transition metals are
determined mainly by d electrons. For the ferromagnets
Fe, Co, and Ni the combined 4s and 4p contribution to
the magnetic spin moment is less than 5%, and the orbital
magnetic moment is entirely due to 3d electrons [11]. In
the following we shall rely on a simple single particle
picture, using a Slater-Koster d-orbital basis, to convey
the physics involved. The theory developed is more
general, however, and is tested by numerical multiplet
calculations.

The properties of 3d electrons are best probed in an x-
ray absorption experiment by excitation of 2p electrons
to unfilled 3d states. The resulting integrated "white
line" intensities Al, and AI, are linked to the number of
unoccupied 3d states (holes) N in the electronic ground
state. The polarization dependent white line intensity for
a magnetically random sample [12] with higher than Dzh
crystal symmetry [13] (z axis along a threefold or higher
axis) is given by [14]

[At, + AL] = pN' 1 + —Q'C, 7
3 8 )

where n = x, y, or z, and C is proportional to the square
of the radial p ~ d transition matrix element. Here,
X' is the number of holes per orbital d;, summed over
the Brillouin zone (BZ), so that N = P; N'. It can be
shown that B = —4 for linearly polarized light (electric
field vector E ~~ n), and 8 = 8 for circularly or plane
polarized light (x-ray wave vector k ~~ n, EJ k).
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The polarization dependent correction term
(7C/3B) P; N'Q' to the isotropic intensity CN/3
arises from the anisotropy of the d charge density
within the atomic sphere. In a band picture, the two
terms in Eq. (1) may be thought of as a monopole and
quadrupole contribution to the d hole density in the
Wigner-Seitz cell [15]. Here Q' = (d;~Q~~~d, ), where

Q p
= 6 p

—3r rp/rz is the quadrupole tensor with

Q p
= Qp and g Q = 0. The matrix elements

(d;~Q ~d;) are given in the first column of Fig. 1. The
vanishing trace of Q results in the important sum rule for
the total intensity

g[AL, + Al, ] = CN. (2)

Equation (2) also holds for a single measurement of
polycrystalline samples or, for samples with higher than
twofold symmetry about z, it applies when E (k) for
linear (circular) polarized light is at the "magic angle"
54.7 from the z axis [13,16].

Carra et al. have recently derived a related sum rule for
the XMCD intensity [7,14],

[AAL, —2AAI, ] = C/3h(2( S) + 7(T )). (3)
Here, AAI, and AAI, are the L3 and Lz dichroism
intensities measured in a geometry k, H„,~~ a, where
n = x, y, or z denotes the Cartesian frame. It is assumed
that the external magnetic field H„,is large enough to
magnetically saturate the sample [17]. (S ) and (T ) are
the expectation values of the spin operator and the intra-
atomic magnetic dipole operator T = S —3r(r S) for
the spin quantization axis aligned along n. We can write

2C,. 7
[AAI. ,

—2b, AI., ]~ = „g.s' 1 + —Q' (4)

T = gp Q @ST, indicating the coupled charge (Q) and
spin (S) components of T.

For 3d transition metals the spin-orbit (s.o.) interaction
s L S (s ~ 0.1 eV) is much smaller than the exchange
interaction (band splitting 5,„=1 eV) and the crystal
potential (characteristic splitting Acp = 1 eV at I in
the BZ) and hence can be treated by perturbation theory
[3,18]. Such a treatment yields a nearly isotropic spin
(S ) = (S) when the sample is magnetically saturated
along the Cartesian axes by a strong magnetic field [17],
the s.o. induced anisotropy being only of second order
(about 1%). A perturbative calculation of (T ) yields the
approximate result (T ) = g; Q' s' for higher than D2h
symmetry [13], where we have expressed (S) = g; s' in
terms of its d-orbital projected components s'. While the
above result is exact in the limit of zero s.o. coupling, the
neglected s.o. correction terms are of orders (sc/AcF)
0.01 (same spin) and s/(5„+ACF) ~ 0.1 (opposite
spin), respectively. In 3d transition metals, to a good
approximation, (T ) is therefore due to a lower than cubic
site symmetry only, and the effect of s.o. coupling on
(T ) can be neglected. This result expresses the intuitive
picture that, for weak s.o. coupling, the quadrupolar
charge distribution Q p remains largely decoupled from,
and unaffected by, the magnetic spin orientation Sp.
For 3d metals, (T ) therefore predominantly rellects a
quadrupole term in the anisotropic spin density within the
Wigner-Seitz cell [19]. In close analogy to Eq. (1) we
obtain
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FIG. 1. Calculated matrix elements (d;~Q ~d;), (a = x, y, z) and polarization factors in Eqs. (1) and (4) for the d orbitals [20].
Factors are given for x-ray absorption experiments with linearly (electric field vector E ~~ x, y, z) and circularly polarized x rays
(x-ray wave vector k ~~ x, y, z), and for x-ray circular dichroism studies in an external magnetic field H„,(k, H„,~~ x, y, z). Note
Exk.
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Similar to Eq. (2), there is a new sum rule which follows

from the property+ (T ) = g; s' g Q' = 0. It allows
direct determination of (S) by averaging measurements
along the x, y, and z axes,

g[AAI, —2AAI, ]

provided the sample is magnetically saturated. Note that
Eq. (5) also holds for polycrystalline samples or for a
"magic angle" measurement [13,16].

We have calculated the expectation values Q' (n =
x, y, z) for the five d orbitals d, [20], and they are given in

Fig. 1, together with the polarization dependent correction
terms in Eqs. (1) and (4). It is apparent that, for each
orbital, Q' is very anisotropic. The term Q' vanishes
when averaged over all directions and over all orbitals
d;. Also, for cubic symmetry the orbitals group into
degenerate eg (d & y2 and—d3g2 —„2)and t2s (d y, dy„d„)
sets, and Q' vanishes for each set. The correction term
is expected to be large in ultrathin films, where the charge
density and spin density are not spherically symmetric.

Electronic structure calculations for thin films typically
show a larger spin-density [Eq. (4)] than charge-
density [Eq. (1)] anisotropy so that, in practice,
the measured effect is much larger for the former.
For example, Daalderop, Kelly, and Schuurmans
[19] have calculated the d-orbital projected moments
m, (t) = —(2p~/h)s', m, (d~~ y2) = m, (dxy) = 0.28p~,
m, (d„)= m, (dye) = 0.44p, ~, and m, (d3g2 —„&)=
0.43p, z for a Co monolayer, which yields large cor-
rection terms in Eq. (3), 7(T~) = 7(T, ) = 0.626 and

7(T~~) = 7((T,) + (Ty))/2 = —0.316, respectively. The
same calculation yields an almost isotropic charge den-

sity, such that the correction term in Eq. (1) would be
immeasurably small. Large values 7(T, ) ~ 0.238 have
also been obtained for Co(0001) and Fe(001) surfaces by
Wu and Freeman [9].

We have verified the validity of the sum rule expressed
by Eq. (5) by performing atomic multiplet calculations
with scalar relativistic corrections [21,22]. Anisotropic
embedding was included by use of a crystal electric field,
while magnetic exchange was modeled by an external
magnetic field coupled to spin only [23]. Thermal av-

erages were determined by applying Boltzmann statistics
to the occupation of crystal field split multiplet levels.
We chose D4h symmetry with z along the fourfold axis,
and cubic and tetragonal crystal field splittings 10Dq and
Dt = Ds, respectively [24].

Results for Coz+ in a (3d7) configuration, as a function
of Ds and exchange splitting 5„,are shown in Table I.
While the relative dipolar contribution for a given magne-
tization direction, e.g. , 7(T,)/2(S, ), increases substantially
with increasing Ds, the angle averaged dipolar contribution
7(T„)/2(S,„)decreases strongly. Remarkably, upon an-

gle averaging, the dipolar contribution is smaller in tetrag-
onal than in cubic symmetry. We observe that the angular
average of the XMCD spin sum rule effectively cancels
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TABLE I. (S ) and (T ) calculated for Co2 (d7) ion for
varying tetragonal distortion Ds and exchange splitting 5„.
We have used a s.o. coupling constant s = 0.066 eV,
a cubic crystal field splitting 10Dq = 1 eV, temperature
T = 25 meV, and define (T,„)= ((T,) + (T,, ) + (T,))/3 and
(S'.) = ((S.) + (S,) + (S,))/3

Ds (eV)
5„(eV)
&S,)(6)
(S.,y)Y)
&T,)(&)

&T.,y)(I')

(S.„,)(6)
&T'.)(&)

7&T,)/2&S, )
7&T.,)/2&S..)

0 0.075
1 1

0.1

1

0.5
1

0.5
0.1

0.5
0.01

—1.498 —1.498 —1.498 —1.498 —1.464 —0.405
—1.498 —1.498 —1.498 —1.498 —1.479 —0.506

0.057 —0.088 —0.139 —0.213 —0.916 —0.053
0.057 0.084 0.088 0.104 0.096 0.033

—1.498 —1.498 —1.498 —1.498 —1.474 —0.472
0.057 0.026 0.013 —0.002 —0.001 0.004

—0.132 0.207 0.325 0.498 0.469 0.461
—0.132 —0.061 —0.030 0.005 0.002 —0.030

[AAt. , + AAL, , ]y =— (6)

the contribution of the magnetic dipole operator when the
tetragonal crystal field splitting Ds becomes larger than the
spin-orbit splitting s .

Angle-dependent XMCD spectroscopy also yields valu-
able information about the origin of the magnetocrystalline
anisotropy. For example, in thin films, a perpendicular
magnetic anisotropy results when the shape anisotropy, fa-
voring in-plane orientation, is overcome by an anisotropy
resulting from the s.o. interaction. Bruno [3] has shown
in a perturbation picture that the energy anisotropy due
to the spin orbit interaction AE, , is proportional to the
anisotropy of the orbital moment mo = (Ly) p, tt/R—. As
discussed above, the spin moment for 3d transition met-
als remains isotropic to a very good approximation in the
presence of s.o. coupling, with an anisotropy of order
(s/Acp), only. On the other hand, the anisotropy of
the orbital moment is of order $/AcF, as illustrated in
Table II, and hence dominates [25]. It can therefore be
viewed as the microscopic origin of the s.o. induced mag-
netic anisotropy, i.e., of the magnetocrystalline anisotropy.
The anisotropy persists even when the states are summed
over the BZ, and Bruno [18]has estimated the orbital mo-
ment anisotropy for (100) and (ill) fcc monolayers of
Fe and Co and found large values mo —mo = 0.20p, ~.II

From these estimates, we expect that the anisotropy of the
orbital moment and its preferred direction should be easily
measurable by XMCD.

For samples with uniaxial anisotropy (no in-plane

anisotropy), one obtains b, F., ~ mo —mo, and theII

angular dependence of the orbital moment can be directly
determined by XMCD. For an experimental geometry
where k and H„tare at an angle y with respect to the
surface normal and H„,is sufficiently large to magnet-
ically saturate the sample [17], the orbital moment mo

along the field direction can be directly determined by use
of the sum rule [6]
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In case of uniaxial anisotropy, mo = mo cos y +
mo sin y, such that measurements at two angles arell

needed to determine mo —mo. The angle-averaged mo-ll

ment (mo + 2mo)/3 may be determined in a single magicII

angle measurement.
It is apparent from Fig. 1 and Table II that the electronic

charge-density anisotropy is closely related to the magnetic
spin-density and orbital-moment anisotropies. In the pre-
sented picture, all three arise from unequal contributions
of the d orbitals when the k-dependent states are summed
over the BZ. Estimates show that the charge-density
anisotropy is typically small in transition metal films,
but that the two magnetic anisotropies are large and mea-
surable by XMCD. From the above discussion, we expect
to find a close relationship between their absolute values
and symmetries. This picture is indeed confirmed by re-
cent XMCD measurements on an Au/Co/Au wedge [26].
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