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Cooperative Transport of Brownian Particles
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We consider the collective motion of finite-sized, overdamped Brownian particles (e.g. , motor
proteins) in a periodic potential. Simulations of our model have revealed a number of novel cooperative
transport phenomena, including (i) the reversal of direction of the net current as the particle density is
increased and (ii) a very strong and complex dependence of the average velocity on both the size and
the average distance of the particles.
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The most common and best known transport phenom-
ena occur in systems in which there exist macroscopic
driving forces or gradients of potentials of various origin
(typically due to external fields or concentration gradi-
ents). However, recent interesting theoretical and experi-
mental studies have shown that nonequilibrium dissipative
processes in structures possessing vectorial symmetry can
induce macroscopic motion on the basis of purely micro-
scopic effects [1—10].

This newly suggested mechanism is expected to be
essential for biological transport processes such as the
operation of molecular combustion motors or the contrac-
tion of muscle tissues. In these cases Brownian particles
(myosin, kinesin, and dyenin) convert the energy of ATP
molecules into mechanical work while moving along peri-
odic structures (myosin along actin filaments, kinesin and
dyenin along microtubules) [11—13]. A transport mecha-
nism of this kind has also been experimentally demon-
strated in simple physical systems [14,15].

So far the models for the transport of Brownian
particles in periodic structures have been based on the
description of the motion of one single particle, but in real
systems one can rarely find this situation. Experimental
evidence shows that several motor proteins can carry one
larger molecule, and a large number of free motors can
move along the same microtubule [11]. Furthermore,
in separation processes a large number of particles are
moving in the same medium [14].

Therefore we propose a simple one-dimensional model
via many interacting Brownian particles moving with
overdamped dynamics in a periodic potential. According
to our computer simulations the model displays a num-
ber of novel cooperative phenomena. (i) First we show
that for a range of frequencies of a periodic external driv-
ing force the average velocity v of the particles changes
its direction as the number density of the particles is in-
creased. (ii) In addition, v has a sensitive dependence on
the size of the migrating particles. This effect is demon-
strated for two kinds (periodic and constant) of driving
forces. In the last part of the paper we present analyti-
cal results indicating that in the case of constant driving
force and nearly zero distance between the particles the

dependence of the velocity on the particle size becomes
extremely complex (nondifferentiable).

The motion of a single particle (in the absence of other
particles) is described by the Langevin equation

x&
= f(x&) + s&(t) + F&(t), j = 1, . . . , N, (1)

where N is the number of particles, x~ denotes the position
of the center of mass of the jth particle, f(x) —= —8, V(x)
is a force field due to the sawtooth shaped periodic po-
tential V(x), g~(t) is Gaussian white noise with the auto-
correlation function (gj(t)$;(t')) = 2kT6~; 6(t —t'), and

Fj(t) is a "driving force" with zero time average, which
may be stochastic. Since in most of the experimental situ-
ations we can suppose that the interaction between two
particles can be well approximated with a hard core re-
pulsion, we assumed that the particles are hard rods (see
Fig. 1). The hard core interaction means that during the
motion the particles are not allowed to overlap (a parti-
cle does not continue to move in its original direction if it
touches another one). This rule complements Eq. (1). All
particles have the same size b, while the period of the po-
tential is p = 1. The size of the system or in other words
the number of the periods is 1.. We have applied peri-
odic boundary conditions. The positions of the particles
were updated sequentially (one after another, from left to
right) using the finite difference version of (1). We have
checked other types of updatings (random, from right to

1-a

FIG. 1. Schematic picture of the system we consider showing
two particles with size b subject to the sawtooth shaped
periodic potential V(x). The period of the potential is p = 1,
where the lengths of the slopes are A[ = a and Aq = 1 —a.
The potential difference between the top and the bottom is Q.
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left), with no change in the results. N and L go to in-
finity, while L/N remains finite, but usually N = 20 is
large enough. During the integration of (1) Bt was typi-
cally equal to 0.0001. Most of the runs required several
days on a fast IBM RISC 6000/375 workstation.

Our model is one dimensional because the macro-
molecules serving as highways in biological transport can
be assumed to be linear representing well-defined tracks.
Thus, due to the hard core interaction, we also exclude
the possibility of "passing. " In higher dimensions (where
the particles can get around each other) further effects are
expected to take place. In addition to the case of periodic
driving force, in the second part of the paper we shall
also consider the case of constant driving force, because
the latter case is (i) conceptually simpler, thus, it allows
more direct interpretation of the simulational results and
the analytic treatment of some limiting cases and (ii) a
zero-mean signal can always be constructed as an alter-
nating (+F and F) piec—ewise constant signal.

Normally, one single particle moves in the direction
corresponding to the smaller uphill slope of the potential.
However, there is a range of the parameters of the
periodic driving force for which the particle migrates
into the opposite direction [4—7]. In this regime we
have found that the gradual addition of particles into the
system results in the change of their average velocity back
to the "normal" direction. We have tested this result for
several different cases (including driving forces periodic
in time [7] and distributed according to "kangaroo"
statistics [4]), and we have found that this change of the
current s direction is a universal property of the collective
motion in our model. Figure 2 shows a simple example,
where the driving forces are Fi(t) = A sin(cujt) and the

~~ values are chosen randomly around a fixed value cu

with a dispersion of several percentage of ~a (to avoid
synchronization). The plot shows the average velocity
as a function of cu, for various values of the average
covering defined as p —= bN/L (0 & p & 1). In the inset
we have plotted the fundamental diagram: the particle
current 1 = vN/L as a function of the average covering
for cu = 175.

Another interesting feature is observed if the average
distance between two neighboring particles is fixed (d =
L/N —b = const) and we are changing the size of the
particles.

Before describing our results we mention that it is easy
to show that a system of length L consisting of N particles
of size k + b (0 ~ b & 1, k = 1, 2, . . .) is equivalent to
a system of length I. —kN consisting of N particles of
size b. Obviously, this kind of transformation has no
effect on the motion of particles, therefore, it is enough
to consider particles with sizes less than 1. In other
words, any quantity is a periodic function of the size of
the particles with period 1, i.e., with period equal to the
period of the underlying potential.

Figure 3 shows the average velocity as a function of
the size of the particles in the above mentioned case with
sinusoidal driving forces for various values of ~. The
velocity has very drastic changes. A large peak can be
observed for b somewhat smaller than 1, and a smaller
peak for b somewhat smaller than 1/2. In most of the
other cases we have studied, a large peak is observed
just before b reaches 1 or for b a bit larger than 0 (or
equivalently larger than 1), and a minimum (valley) on
the opposite side of this integer value. This structure is
repeated around 1/2, but on a smaller scale. Sometimes
this structure can be observed around 1/3 and 2/3.

Investigating the origin of this strange behavior of
the particle size dependence on the average velocity we
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FIG. 2. The plot of the average velocity v as a function of the
average frequency ~ of the sinusoidal driving forces for three
different values of the average covering p = bN/L The inset.
demonstrates the reversal of the particle current J = vN/L as
a function of the average covering p, for cu = 175. (Q = 4,
a = 0.8, b = 0.5, T = 1, and the amplitude of the driving
forces A = 32.)
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FIG. 3. The plot of the average velocity v as a function of
the size of the particles b for three different values of the
frequency ~ of the sinusoidal driving forces. The average
distance between two neighboring particles is d = 0.5. (Q =
4, a = 0.8, T = 1, and A = 32.)
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examine the simplest case when the driving force is
stationary: F~(t) = F and smaller than the uphill gradient
of the potential.

Let us consider the case when the size of the particles
is somewhat less than 1 and there are two particles
in the neighboring valleys of the potential. Then the
second particle is not able to jump further ahead until
the first one jumps away. So the first one hinders the
second one. Thus the average velocity is smaller than
the velocity of a single particle. Figure 4(a) shows this
situation for 15 particles. A vacancy type current can
be observed, as a consequence of the traffic jams arising
from the hindering of particles. This phenomenon is
also related to jams common in one-dimensional driven
diffusive systems and traffic models [16]. If the size of
the particles is a bit larger than 1 and there are also two
particles in the neighboring valleys, both of them cannot
be in the minimum in the same time, therefore, the first
one has a larger chance to jump further. In this case the
second one indirectly "pushes" the first one. (But the first
one also binders the second one. ) Thus, in spite of the
hindering effects, the average velocity can be larger than

the velocity of a single particle. This situation can be
seen in Fig. 4(b) for 12 particles. There are no jams and
the density waves show that the particles help each other
to jump through to the next valley. In case of slowly
alternating external forces these effects (hindering and
pushing) are expected to infiuence the net transport.

Figure 5(a) shows the average velocity as a function of
the size of the particles in this stationary case, for various
values of the average distance d —= L/N —b between
two neighboring particles. When d is infinity, the velocity
is independent of the size of the particles, and identical to
the velocity of a single particle. Decreasing d a velocity
peak starts to develop for d just larger than b = 0,
and a valley appears for b close to, but smaller than
b = 1. This was explained in the previous paragraphs.
As d is further decreased, another peak appears beyond
b = 1/2 and also a valley before b = 1/2. This can
also be explained in the above mentioned manner, taking
into consideration that two particles can sit in the same
potential valley if b = 1/2, and we can handle them as
one particle with size b = 1. Decreasing the average
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FIG. 4. Motion of the particles in the space-time domain.
The time increases from left to right and the particles are
moving downwards under the influence of the stationary driving
force F. Horizontal lines represent the bottom of the potential
valleys, and the wide slanted line represents the average motion
of a single noninteracting particle. (a) 15 particles with size
b = 0.833. A vacancy type current can be observed, as a
consequence of the hindering effect of particles. The average
velocity v is smaller than the average velocity of one single
particle. (b) 12 particles with size b = 1.166. There are no
jams, and the density waves show that the particles assist each
other in jumping over to the next valley. v is larger than the
velocity of a single particle. The average distance between
particles is d = 0.5 in both cases.

0
0

(b)

0.2 0.4
i

0.6 0.8

FIG. 5. The average velocity v as a function of the size
of the particles b, when the driving force is stationary with
F = 4. (a) The plot for different values of the average distance
between two neighboring particles: d = ~ (one single particle,
the horizontal line) and d = 0.6, 0.4, 0.2, 0.1, 0.05, 0.025.
(b) The plot in the limit when the average distance between two
particles goes to zero. This discontinuous function has sharp
minima for b rational and a value equal to F if b is irrational.
(Q =4, a =0.2, and T= 1.)
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distance further, valleys and peaks appear before and after
b = 1/3 (three particles in one potential valley), b = 2/3
(three particles in two potential valleys), and so on at
(almost) any rational value of b.

If the sum of the average distance and the size of
the particles is a rational value, i.e., b + d = n/m, we
can say that the structure is commensurate. For d « 1

the particles are distributed evenly and m particles can
be found in n potential valleys. The minimum of the
potential energy of the system is realized if every mth
particle is sitting in the bottom of the potential valleys.
Then, for F = 0, each particle has to jump a distance
1/I to reach the next minimum energy state of the
system. Simple algebra shows that such a system (in
which N particles are playing the role of a single particle)
can also be described in terms of a modified sawtooth
potential with a period p' = 1/m, where the lengths of
the slopes are A'i = (ma)/m and Az = (m(1 —a)j/m.
The potential difference between the top and bottom states
is NQ', where

(ma] (m(1 —a))
mam(1 —a)

The notation ( . ) means the fractional part of the value
between the braces.

Thus, in the presence of the driving force F, we can
calculate the average velocity as the velocity of a single
particle using the formula derived by Magnasco [1] with
parameters Q', A'i, Az, F' = F, and T' = T/N (T' ~ 0
for N ~ ~).

However, if the structure is incommensurate and the
average distance is small, the corresponding modified
potential of the whole system is almost fIat and the system
has a continuous translation symmetry. Therefore the
particles can move with almost the maximum velocity
I max

The modified potential is also flat (or almost liat), if the
structure is commensurate but ma is an integer number
(or close to an integer number). This is the reason why
we cannot see a valley before 1/5, 2/5, 3/5, and 4/5 on
Fig. 5(a) as a consequence of a = 0.2.

Correspondingly, decreasing the average distance be-
tween the particles the minima of the valleys tend to the
rational values. The values of the minima go to the values
calculated from Magnasco's formula, and the width of the
valleys goes to zero. For the other cases the velocity goes
to v,„=F. In the limit when the average distance is
zero, we get a strange, discontinuous function with sharp
minima for b rational and a value equal to F if b is irra-
tional [Fig. 5(b)].

In conclusion, we have demonstrated that taking into
account the interaction of Brownian particles migrating
via overdamped dynamics along periodic structures re-

suits in a variety of novel cooperative effects. Among
other possible applications, our results are expected to be
pertinent from the point of biological transport involv-
ing finite density of protein molecules moving along sub-
strates made of macromolecules. In particular, we have
found a strong dependence of the average current on the
particle size for sizes close to the period of the under-
lying potential. If thermal ratchet type models represent
an adequate description of biological transport, our latter
result is likely to be relevant in the understanding of the
behavior of such molecular motors as kinesin or dyenin,
since their size and the period of the corresponding mi-
crotubules are comparable (see, e.g. , Ref. [12]). Effects
caused by the finite size of the transported objects (e.g. ,
other proteins, mitochondria, visualizing beads) represent
potential subjects for further studies.
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