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Vortex Dynamics and the Hall Anomaly: A Microscopic Analysis
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We present a microscopic derivation of the equation of motion for a vortex in a superconductor.
A coherent view on vortex dynamics is obtained, in which both hydrodynamics and the vortex
core contribute to the forces acting on a vortex. The competition between these two provides an
interpretation of the observed sign change in the Hall angle in superconductors with mean free path I
of the order of the coherence length $ in terms of broken particle-hole symmetry, which is related to
details of the microscopic mechanism of superconductivity.

PACS numbers: 74.60.Ge, 74.20.Hi, 74.25.Fy

In recent years the interest in vortex motion in super-
conductors has revived, mainly due to the advent of high
temperature superconductors (HTSC). As a consequence
of the peculiar material properties, the physics of vortices
in HTSC shows many new aspects not encountered in con-
ventional superconductors [1]. A major theme is the sign
change in the Hall effect in the superconducting state, as is
observed in both HTSC [2,3] and conventional supercon-
ductors [3] for temperatures T just below Tc This Hall.
anomaly cannot be understood within the framework of
the conventional Bardeen-Stephen [4] or Nozieres-Vinen
[5) theories for vortex motion that predict the Hall effect
in the superconducting and normal state to have the same
sign for all temperatures. Several attempts at a theoretical
understanding of the phenomenon have been undertaken
[6,7], but none of these seem to explain the experimental
data. In Ref. [3] Hagen et al. , comparing a number of ex-
periments, conclude that the sign change of the Hall effect
is an intrinsic vortex property that occurs if the electron
mean free path l is of the order of the coherence length

Within a phenomenological analysis, Feigel'man et
al. [8] interpret the sign change in terms of broken particle-
hole symmetry and obtain good agreement with the experi-
mental signatures [3] of this effect. It is the purpose of
this Letter to report on a microscopic calculation of the
dynamical single vortex properties that yields a unifying
description of the physics involved and puts the results of
the analysis of Ref. [8] on a firm theoretical basis.

Before presenting the microscopic theory, we discuss
our main results for the vortex equation of motion and
the resulting Hall force and angle. In general one expects
the forces on a vortex to consist of two contributions, i.e.,
one from the electronic states in the vortex core and one
from the hydrodynamic fIow far away from the core. The
vortex equation of motion has the form

[Mc + MH)& + rlcV = tKttVT [Yc + YHlV'I & z.
Here V denotes the velocity of the vortex and VT is
the transport velocity due to an applied current density
j = KH VT /cI&o (we consider a film or layered structure,

the extension to a 3D geometry is straightforward). The
equation of motion includes a vortex mass M, a damp-
ing term g, and the Lorentz and Hall force coefficients
~ and y. %'e made a clear separation into core and hy-
drodynamic contributions by writing subscripts C and H,
respectively. Extrinsic forces due to pinning and the in-
teraction with other vortices add to the right-hand side
of the above equation of motion; however, here we con-
sider only intrinsic vortex properties. The coefficient for
the Lorentz force, ~H = ~n„arises from the hydrody-
namic How around the vortex with the superAuid density
described by n, [9]. The mass terms were considered by
Suhl in a Ginzburg-Landau approach [10]. The core con-
tributions g~ and yc were calculated by Kopnin and co-
workers [11],who found (we use h. = c = kti = 1)

where n, denotes the electronic density, coo = 5 /eF
is the level spacing between the localized Caroli-
de Gennes —Matricon (CdGM) states in the core [12], and
7, is the relaxation time.

The key point in the determination of the Hall angle
nH, ~~ (tannH, ~~

=
7 /rI) is to find the hydrodynamic con-

tribution yH. For comparison we review the similar proce-
dure for uncharged bosons like He, where the vortex core
has no internal structure and the Hall force arises from the
first order time derivative t/ti B,Q in the Lagrangian den-
sity [13]. With P = ~ne'~, n the mean particle den-
sity, the corresponding contribution to the Lagrangian is
6L = neo. In the—presence of a vortex at R, the phase
configuration is p(r, r) = p (r —R(7)) with tp (r) =
arctan(y/x). The Euler-Lagrange equation yields a Hall
force FH, ~~

= —2mnV X x, or yH = 2mn for bosons. If
no normal fluid component is present at T = 0, the Hall
and Lorentz force combine into the Galilei invariant Mag-
nus force FM = u(VT —V) X z [9].

A hydrodynamic contribution to the Hall force in a su-
perconductor arises also from a first order time derivative
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in the Lagrangian. This is most clearly seen in a time
dependent Ginzburg-Landau (TDGL) approach, where a
term 6X = (N,'/2AN, )hi R, A appears in the Lagrangian
density [14]. This term depends on the electronic band
structure through the derivative of the density of states
N, at the Fermi level N,' = B~N, (p) ~~=„and is thus re-
lated to particle-hole asymmetry. Here A is the strength
of the attractive BCS model interaction. Note that in BCS
theory 2N,'/AN, = N, B„1nTc. The same procedure as
for He leads to a small hydrodynamic contribution yet =
rr(N,'/AN, ) )5) of order n, (A/eF) (N,' = n, /EF). Its
exact magnitude and sign depend on the (experimentally
accessible) details of the electronic band structure. Al-
though core physics is lacking in a TDGL approach [6],
we will see in the following that TDGL does predict the
correct hydrodynamic contribution y&. A hydrodynamic
contribution to y is a general property of superconductors
with broken particle-hole symmetry, also for temperatures
far below T~.

Defining nt, = N,'A2/AN„ the total Hall force con-
stant for a superconductor at cup « T « 6 becomes (see
also the detailed discussion in Ref. [8])

y = nn, (cops„) /[1 + (a~ps, ) ] + 7rnt, . (2)

The first term describes the contribution arising from
the quasiparticles bound to the core. Close to the
superconducting-normal transition the scattering states
have to be included [15] and the term crosses over to the
normal state Hall term; it therefore has the normal state
sign. The second term is the hydrodynamic contribution.
With cup = 5 /eF and nt, /n, = 6 /eF, the core term
is dominant in the clean limit l ) g(T), whereas the
hydrodynamic contribution determines the Hall angle
in the dirty case. A sign change in the Hall effect
occurs if the hydrodynamic term has a negative sign,
i.e., N,' ~ 0. Within a free-electron based BCS theory
we have N,' ~ 0 and no sign change occurs. However,
a simple modification of the electronic dispersion can
drive N, negative, resulting in sign changes of the Hall
effect as described below [e.g. , consider the dispersion
et, = k2/2m + k /4m ep in two dimensions: the corre-
sponding density of states is N, (e) = m/~(1 + 2e/ep)
and N,' = —(2'/mep)N2(e) & 0 accordingly]. With

N,' ( 0 the Hall effect has the normal state sign in
the clean limit and the opposite one in the dirty limit.
Furthermore, the two contributions have a different
temperature dependence through A(T), allowing for
multiple sign changes. Our interpretation of the sign
changes in HTSC (Bi- and Tl-based compounds) is as
follows: At low temperatures the clean limit is realized
with i ) g(T) and the Hall effect has the normal state
sign; with increasing temperature, 7, and 5 decrease
until the second term in Eq. (2) dominates and a first
sign change occurs when l —g(T) At even higher.
temperatures, close to T&, the normal quasiparticles take
over and a second sign change back to the normal state

sign occurs. Note that the low-temperature sign change
may be invisible if pinning is strong enough, which is
probably the case for Y-Ba-Cu-O. This analysis provides
a natural interpretation for the experimental findings as
summarized by Hagen et al. [3].

We now continue with an outline of the microscopic
derivation of the vortex equation of motion, starting
from a model Hamiltonian 0 that includes a short
range attractive BCS interaction, as well as a long
range repulsive Coulomb interaction (see Ref. [16] for
more details). We express the grand canonical partition
function as an imaginary time path integral over the
electronic fields P and the gauge field A (n = r, x, y, z),

23 i' 23A exp( —5),

with Euclidean action

dr(P [8 —ieAp + s(V —ieA)]P

23 5 X)A exp(Tr in@ ' —Sp),

8, —ieAp + s(V —ieA)
8, + ieAp —g(V + ieA)

2
F2 + B2

dx —I&l' + + I'en;Ap
A S~

(4)

and f dx —= fp dr f d r. The only remainder of the
electrons is the Nambu-Gor'kov Green's function
The Euler-Lagrange equations obtained by varying Ao
and A describe Thomas-Fermi and London screening,
respectively. They read [20]

V E = 47rie[n, (p, + ieAp, 5) —n, ),
—a, E + V x 8 = 47r~, .

Both the electronic density n, and current density j,
are expressed through the electron Green's functions.

1For instance, n, = —Tr [cr3$] =
2 f ds N, ($ + p, +

—Aglftgtgl + ieApn;

+ [E' + B']/g~'. t

Here $(V) —= —V /2m —p, describes a single conduc-
tion band, and en; denotes the background charge density
of the ions. The idea is to construct an effective action
for the vortex coordinate R only, by integrating out the
electronic degrees of freedom. Our approach is inspired
by the one of Simanek [17]. In addition to the analy-
sis of Ref. [17] we treat carefully the hydrodynamics of
the problem and also avoid approximations for the matrix
elements in the vortex core (see below).

A Hubbard-Stratonovich transformation introduces the
energy gap 5 as an order parameter field and after
performing the trace over the field P (see Refs. [18,19]
for a survey of the technique used) we arrive at
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ieAO) [I —
s Q$z + Az ]. The electronic density is

a function of the electrochemical potential p, + ieAO
and in the presence of particle-hole asymmetry also of
the energy gap 6 [8,21]. Because of charge neutral-
ity n, (p„, 0) = n;. Expanding in Ao and 5 we find

n, = n; + ieAoN, + ng + . , with n~ = N,'5 /AN, .
Deviations of n, from n; are screened on the Thomas-
Fermi length ATF = (47re N, ) 't and yield a nonzero
scalar potential Ao determined by the screened Poisson
equation (—V + ATF)Ao = 47rient, Ma. gnetic fields
and currents are screened on the scale of the London pene-
tration depth At = (4vrn, e /m) 't In t.he following
we concentrate on strong type II superconductors with
At » g.

Varying 6 yields the BCS gap equation, which has a
constant as well as vortex solutions. Here we concentrate
on the single vortex solution A(x) = A, (r —R(r)) with
vortex coordinate R and 5 = [5 ~e'~ . For A„we
adopt the mean-field solution from Ref. [12]. Using nt,
as a source, the screened Poisson equation defines also a
single vortex solution A 0 for the scalar potential. In the
limit of strong screening (A» «g) A.o

——4vrieATFnt, .

As a result, the electronic density in the vortex core does
not differ from the density far away from the core.

We neglect fluctuations around the mean-field solu-
tions A, (r —R(i.)) and 5 (r —R(r)), since longitu-
dinal fluctuations of the phase and Ao are lifted to the
plasma frequency, transverse fluctuations of A have a gap
proportional to the superfluid density, and fluctuations of
~A~ are at least at energy 2A [18]. Thus, the path-integral
measure f D25 23A reduces to f 23R.

Using a gauge transformation eAO ~ eAO —jo/2 —=

Qo and eA ~ eA —Vp/2 =—Q, the energy gap 5 can
be chosen real and manifestly gauge invariant quantities,
such as the superfluid velocity Q/m, appear in g '. The
dynamics of a vortex can now be studied by expanding
Tr In@ ' to second order in Q„and in the vortex
displacement Bh = —R(i.) Vb„(r) around the static
vortex solution. Furthermore, due to the singular gauge
transformation a source term V X Vp /2e = koan(r—
R) appears in the London equation that determines the
magnetic field 8 around a vortex.

We express the unperturbed Nambu-Gor'kov Green's
function in the presence of one vortex in Bogoliubov —de
Gennes eigenstates U& with energy Ez as

~ U (r)U (r')
lh)~ + Ep

In the relaxation time approximation that we use, co~ =
co~ + sgn(co~)/2r„, where the au~ are fermionic Mat-
subara frequencies.

The result of the expansion is an effective action
S ff [R] = Sc + Sti for the coordinate R of one vortex,
consisting of a hydrodynamic part

E2 + g2

(dx
8~

1+ —Il, pg Q p
—in' Q n),2

(7)
and a core part

5 y y (R, Wxx) (R- „.Wx x)

2P x, . (t~, + &x)(t~,+. + ~x)
0 V6

Wxx = d rUx V~ 0 Uxi,

and the cu denote bosonic Matsubara frequencies.
First we discuss the hydrodynamic contribution S~.

The kernel II p is the polarization bubble and describes
both longitudinal and transverse screening [22]. The
transverse part of the polarization term in Eq. (7) is Ilr =
n, (T) (6"" —k k" /k2) +, where a, b = x, y, z and

indicates higher order terms in k and co. The
longitudinal part of the polarization term in Eq. (7) is
Ilt = N, + . . Using the equation of motion (5) for
the fields and n(p„A ) —n; = nt, , the hydrodynamic
part of the effective action can be rewritten as

1

(8)

dx[E + B + At( —B,Eu + V x BU)

+ ATF(V E„) + 16m ATFnt, + 47rint, p ].
(9)

The last term is the most important one for our discus-
sion as it yields the hydrodynamic contribution to the
Hall coefficient ytt = ~nt, = wN,'5 /AN, This result.
coincides with that of the TDGL approach. The only
other dynamic term in Eq. (9) is the transverse part of the
E2 term that yields a small electromagnetic mass [10,16].
All other terms are nondynamic and contribute to the line
energy of a vortex [1].

We now turn to the core contribution Sc. in Eq. (8). Its
origin is found in the transitions induced by the moving
vortex between the CdGM states in the core labeled by
A and A' and involving the matrix elements Wqq . The
energies are E~ = A~a with A a half integer. The sums
over states A and A' in Eq. (8) may be evaluated using
the constant level separation Fx —Fx i = ~o [12] and
properties of the matrix elements [11]. Explicitly we use
the identity

0 VA tU = (&x —& )U VUA, (1o)

together with the relations for the eigenstate wave
functions V Ux = (kF/2) [Ux —

&

—Ux+&], VyUx =
(ikF/2) [Ux i + Ux+i]; see Ref. [11]for a discussion of
this point. Using the orthogonality relations, we find the
selection rule that only neighboring states are connected
by the matrix elements. We also restrict ourselves to the
temperature range coo « T where the sum over A's may
be replaced by the integral f dFx/oro. The result for Sc
can be written in the form
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1
~c =—

2

P
dr'(Kc (r —r')R(v) R(r') + iKr (r —r')z [R(r) X R(r')]).

In Fourier components the kernels Ec determining the
mass and damping (K+) and Hall force (K ) are

K;(~„)=
2

CO pkF

4 E CO„Cc)p
(12)

l CCP I7 + CAPP

where &, = co„+ v.„'sgn(co„). They are nonlocal in
time, however, after analytic continuation to real frequen-
cies they can be expanded in co/coo. The kernel Kc.
—ico„(kFtopr, /2)/[I + (topr„) ] yields the core contri-
bution yc as quoted in Eq. (I), if we put kp = 2~n, in
two dimensions. The kernel Kc. = (~co„~ + r„to„) X

(kpcopr„/2)/[I + (toor„) ] is proportional to ~co, ( for
small frequencies, thus describing Ohmic dissipation
[19,23]. Apart from the damping coefficient zlc it yields
the core contribution to the vortex mass [11,17],

(coo &r )
[I + (~ or)' ]

(13)

which is large in the superclean limit with ~p7. )) 1.
Thus, a complete description of intrinsic vortex prop-

erties can be obtained if both core and hydrodynamic
contributions are included. The hydrodynamic part of
the Hall force was neglected in Refs. [11,15,17], whereas
the core physics cannot be described by a hydrodynamic
theory such as TDGL [6]. In Ref. [24] the supercon-
ducting phase was coupled to the superAuid density in
order to obtain a Galilei-invariant Magnus force FM =
Ic(Vr —V) X z from hydrodynamics only. Our analysis
shows that the phase of the superconducting order param-
eter couples to the square of the order parameter, with a
small coefficient that depends on particle-hole asymmetry;
i.e., details of the electronic band structure are relevant. A
Galilei-invariant Magnus force at T = 0 and ~, = oo in
fermionic superconductors is provided by the vortex core
rather than the hydrodynamic Row around the vortex.

In conclusion, we have presented a microscopic deriva-
tion of the equation of motion of a vortex in a supercon-
ductor. Our results relate the observed sign change in
the Hall effect in superconductors with l —s to broken
particle-hole symmetry in the electronic band structure.
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