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Topological Interaction of Coulombic Impurity Centers with Dislocations in Semiconductors

Y.T. Rebane' and J.%'. Steeds'
'H H W. il.ls Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol, BS8 ITL, United Kingdom

A. F Ioff.e Physico Tec-hnical Institute, Russian Academy of Sciences, St Pete. rsburg, Russia
(Received 24 April 1995)

A phenomenon of the topological interaction of impurities with dislocations was studied theoretically.
It was found that this interaction reduces the binding energies of carriers to Coulombic impurities for
off-center valleys in semiconductors by more than a factor of 2 in the case of an isotropic carrier mass
and by a factor of 4 in the case of highly anisotropic valleys.

PACS numbers: 71.55.—i, 71.70.—d

In this Letter the theory of gauge-invariant kp
Hamiltonians for crystals with topological defects [1] is
applied to a study of the topological interaction of
Coulombic impurity centers with dislocations in semi-
conductors. It was first observed by Kawamura [2] that
the effective mass Hamiltonian for a crystal with a screw
dislocation contains additional terms that can produce an
Aharonov-Bohm type of scattering of carriers by dislo-
cations. Several more detailed theoretical investigations
have been made to find a general form of the effective
mass Hamiltonian for crystal with dislocations [3—6].
The most advanced theory [5,6] suggests that, in the pres-
ence of a deformation of the crystal lattice, the momentum
operator p changes into a gauge-invariant momentum
operator p + 8 and, correspondingly, the band structure
energy operator changes from E(p) into E(p + a), where
a = p p; p;~(r) = 8u;/8r~ is distortion tensor and u(r)
is the displacement vector. However, this form of the
Hamiltonian leads to confusion since it gives a nonzero
gauge potential when applied to an electron embedded
in a topologically imperfect lattice with zero crystal
potential, i.e., the free electron case.

An investigation of this problem in Ref. [1] has shown
that there are two different factors contributing to the
gauge potential. One is related to a nonuniform distortion
of the crystal lattice around a topological defect, and
the other is related to the many-valued character of the
mapping of the Bloch-type electron wave function onto a
topologically imperfect crystal lattice.

Both factors should be taken into consideration in order
to obtain a correct expression for the kp Hamiltonian.
Having done this, a general form of kp Hamiltonian for
crystals with dislocations, disclinations, and dispirations
can be found [1]. The resulting kp Hamiltonian is gauge
invariant, and the corresponding gauge group is a non-
Abelian group E(3) of proper Euclidean transformations
of three-dimensional space. The gauge field is confined
within the cores of the topological defects and influences
the carriers in the bulk of the crystal only through the
gauge potential that extends beyond it. This inhuence
leads to a topological interaction of impurities with
dislocations that will be studied in detail below.

For an imperfect crystal that contains only dislocations
(as distinct from the case of the crystal with disclinations
and dispirations) the gauge group E(3) degenerates into
T(3), the Abelian subgroup of translations, and the corre-
sponding gauge potential becomes

A(r) = ip (r)(p/ft —k), (1)
where k is the electron wave vector related to the
point in Brillouin zone for which the kp Hamiltonian
is written; i.e., the Bloch functions corresponding to the
k point of Brillouin zone are chosen as a basis set for
the kp Hamiltonian, p is the momentum-operator matrix
in the basis of Bloch functions corresponding to the k
point of Brillouin zone, and p (r) is the transpose of
the distortion tensor. In the limit of vanishing crystal
potential, the matrix operator p becomes diagonal and
equal to the multiplication operator ftk, and, therefore, the
corresponding gauge potential given in Eq. (1) disappears.

The general kp Hamiltonian can be written in the form

0[V', r] = P'/2m + V, + aV(p)

+ (i/4m c ) P e, tetr, Pt[Vo + 6V(P)]P~,

(2)

where P = p + ift(V' + A), Vti is the matrix of the
crystal potential operator for a perfect crystal in the basis
of Bloch functions, 6V(p) is a matrix functional of
p(r) that accounts for the deformation-related changes in
crystal potential, and the last term in Eq. (2) describes
spin-orbital interaction; a, are Pauli matrices, es/q are
the components of the Levi-Civita tensor, and m is free
electron mass.

Treating V' and p-related terms in Eq. (2) as perturba-
tions allows us to obtain an expression for the effective
mass Hamiltonian in a crystal with dislocations. It follows
from Eq. (2) that this expression can be obtained from the
usual expression for the effective mass Hamiltonian of a
perfect crystal, based on kp-perturbation theory (see, for
example, Ref. [7]), by making the substitutions

V' —iP (r)k, P,„„[1+ P (r)]p „,
V.„-V „+[BV(P)] „. (3)
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For a band extremum at the k point of Brillouin zone,
the diagonal term p vanishes and we can interpret the
first substitution as a distortion-related effective magnetic
potential in the effective mass Hamiltonian. The second
and third substitutions are responsible for distortion-
related changes in the inverse effective mass tensor and
in the crystal potential, respectively.

In a first order approximation, we can neglect the
distortion-related changes in the effective mass tensor and
account for changes in the crystal potential by making
the deformation-potential approximation. We obtain the
effective mass Hamiltonian for simple band extremum

and an exact analytical solution of the corresponding
Schrodinger equation exists.

In fact, the Hamiltonian given in Eq. (7) is equivalent
to that for a particle bound in a Coulomb potential in
the vicinity of an infinite magnetic string. This problem
has been studied [8,9] for the case of a general spherical
potential, and it was found that noninteger quantization of
angular momentum ([p + eA/c] X r) takes place.

Using a spherical coordinate system with its origin on
the dislocation line and applying a gauge transformation
[10]

H(V', r) = —(6 /2) (1/m ) @[V' —iP~ (r)k~]

X [Vp —iP~p(r)k~] + D pe p(r) + V(r),

W exp[i [ku (r) —k b p (r) /2~]),
7 + i P (r)k —(kb)V'p(r)/2~, (8)

(4)

where (1/m ) p and D /3 are the tensors of the inverse
effective masses and the deformation-potential constants
given by usual kp-perturbation expressions [7], e p(r)
is the strain tensor, and V(r) is the potential of a
macroscopic electric field that may present in the crystal ~

For Coulombic impurities, whose interaction with dis-
locations will be studied in this paper, the macroscopic
electrical potential is

V(r) = Ze /~—r,
where Z is the charge of the center and K is dielectric
constant.

For the case of an extremum with axial symmetry, the
tensors of the inverse effective masses and deformation-
potential constants can be written in the form

(1/m ) p
= (I/m, )6 /3 + (I/m~ —1/m, )k k&/k,

D p
= d6 p+, k k/3/k,

where m, and mI are transverse and longitudinal effective
masses and d and are deformation potential con-
stants [8].

The Hamiltonian given in Eq. (4) allows us, in princ-
iple, to calculate how the dislocation influences the bind-
ing energies and wave functions of Coulombic impurities.
This inhuence arises from the deformation-potential and
gauge-potential terms in Eq. (4). The former describes
the usual deformation-potential interaction, while the lat-
ter describes a topological interaction that we will be in-
terested in.

Let us consider the case of a screw dislocation whose
axis coincides with the axis of the valley of an indirect-

gap semiconductor or an off-center direct-gap semicon-
ductor. In this case, the deformation-potential interaction
is symmetry forbidden, and only the topological interac-
tion contributes to changes in the impurity binding states.
If m& is equal to m, , the Hamiltonian given in Eq. (4)
takes the form

where u(r) is the multivalued displacement field and

p(r) is the azimuthal angle, we obtain the following
Hamiltonian for a Coulombic impurity at dislocation line:

H = —(6 /2m, ) [8 /rlr + (2/r)B/Br —A /r ]
—Ze /~r . (9)

Az is the operator of the total angular momentum, given
by

A = —(I/sin6)B/BO(sin0 6/B6) —(1/sin 6)
X [icl/ay + (kb)/27r]. (10)

An exact analytical solution of the Schrodinger equa-
tion with the Hamiltonian given in Eq. (9) can be found
in the same way as for the hydrogen atom, but taking into
account the noninteger angular-momentum quantization.
The corresponding wave functions and energies are

qr (r 6 ) = Ae~~v(sin@)l~ +'ICI~ @I+ /
m, nl, n2 nl

(cos19)e r/zro'(r/r&) l~ & I+n,

—@I+z~ +&(r/r )

(—1)"I (p, + n + 1)
k!(n —k)!I(p, + k+ 1)

x, (12)

where quantum numbers m, n &, n2 take values 0, 1, 2, . . .;
A is a normalizing constant, 4 = (kb)/27r is the flux
of the effective magnetic field confined inside the dis-
location line expressed in the units of the Aux quan-
tum, ro = 2A, v(n~ + n2 + ~m

—4~ + 1)/Ze m, , and

Cg(x) and L~(x) are Gegenbauer and generalized La-
guerre polynomials given by

[n//2j

„() y (—1) I(p, +n —k)(
k! (n —2k)! I (p, )

H(V', r) = —(fi, /2m, ) [V' —i p (r)k] —Ze /~r, (7) where the symbol [n/2] means taking integer part of n/2
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The normalization constant A in Eq. (11) is

A = 2! ! 'I (lm —&l + 1/2)(n~! nz! (Im —4I + n~ + 1/2)) i

(~ ro(lm @I + nt + n2 + 1)l (2lm C'I + ns + 1)l (21m +I + 2ns + nz + 2)) (13)

The corresponding binding energies are given by a In a cylindrical system of coordinates, related to the
Bohr-type formula valley, the Hamiltonian, after the gauge transformation

E .. ., = Ry—/(n~ + n2 + Im —4I + 1), (14)

where Ry* = m, Z e"/26 ~ is an effective Rydberg.
For a band extremum at the edge of Brillouin zone

and a Burgers vector equal to the shortest repeat distance
in the crystal lattice, the flux 4 takes values 0 or
~l/2. The case 4 = 0 is trivial and corresponds to
complete absence of the topological interaction. In the
case 4 = ~ 1/2, the main state is doubly degenerate and
the corresponding wave functions and binding energy are

e'o o o(r, a, p) = (r sino)'i'e "i'"'/v 67rr„',

W~)oo(r, 8, y) = e+'~(r sin@)' e " "'/&6mro, (15)

Eo,o,o
= E &,o,o

= 4Ry /9 (16)

H(V, r) = —(fi /2m() (B„p —k kp/k )

x IV —iP~ (r)k~]IV'p —iP~p(r)k~]
—Ze /~r (17)

if we neglect the deformation-potential interaction. We
assume instead that it can be accounted for as a perturba-
tion (for a screw dislocation oriented along the valley axis
this interaction disappears).

where ~ sign is equal to the sign of the Aux 4 = ~1/2
and ro = 3A, v/2Ze m, .

It can be seen that the topological interaction reduces
the binding energy of Coulombic centers and repels the
wave function out of the dislocation core, thus justifying
the application of the effective mass approximation to
the description of such centers. It is worth noting
that the reduction of the impurity binding energy near
the dislocation line might convert some deep multiply
charged impurities into shallow ones whose description
is possible in the effective mass approximation.

Equations (11)—(16) are applicable only for spherically
symmetric valleys, an approximation that is good in some
cases (PbS, PbSe). However, in many other semicon-
ductors, valleys are strongly anisotropic (Si,Ge,diamond).
A general analytical solution of Eqs. (14) and (15) for
anisotropic valleys has not been found. However, we
can obtain an exact solution in a case of very strong
anistropy, when m~ ~ ~. In this case, the Hamiltonian
for a Coulombic impurity at the dislocation line takes the
form

9' exp(iI ku(r) —kb q (r)/2~]),
7 + iP (r)k —(kb)!7q (r)/2~,

where p(r) is the angle coordinate, takes the form

H = —(fl, /2m, )(B /Bp + (1/p)(B/Bp)
+ (1/p') I:~&/~v + (kb)/2~]')

/y& pz + z2 (19)

The wave functions that satisfy the Schrodinger equation
with this Hamiltonian can be found in the same way as
for Eq. (9),

+,.(p, q, z) = A~(z)e' 'e ' "'(p/p )

&«I" '(p/po), (2o)

where po = 2' ~(n + Im —4I)/Ze m, , the quantum
numbers m, n take values 0, 1, 2, and the normalizing
constant A is

A = (n!)'~ /po(2n(2lm —4I + 2n + 1)

x I (2I —4
I

+ + 1)t'i'.

The corresponding energies are

E „=—Ry"/(n + Im —4
I

+ 1/2) .

(21)

(22)

When the llux 4 takes values ~1/2 (the usual case
for a band extremum at the edge of Brillouin zone and
a Burgers vector equal to the shortest lattice repeat) the
main state is doubly degenerate and the corresponding
wave functions and binding energy are

+.,.(p, ~, z) = &(z)p'" """/2Mp. ,

+=i,o(p. ~.z) = e "~(z)p'"e ' "'/2M~po, (23)

&oo=& io= —Ry,
where ~ sign is equal to that of the flux and po =
6z~/Zezm, .

Thus, we have found, making a number of reasonable
approximations, that the topological interaction reduces
the binding energies of carriers to Coulombic impurities
for off-center valleys in semiconductors. The reduction
of the binding energy to Coulombic impurities located at
the dislocation line is by more than a factor of 2 in the
case of an isotropic carrier mass and by a factor of 4 in
the case of highly anisotropic valleys. The topological
interaction pushes the energy levels of multiply charged
deep impurities toward the band edges and might allow,
in some cases, their description as shallow impurities
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in effective mass approximation. The dislocation cores
should not significantly affect the bound states since their
wave functions given in Eqs. (11), (15), (20), and (23) all

go to zero at the dislocation line.
The theory developed in the present Letter is applicable

for off-center valleys with ~k~ ~ Qrn*Ry*/fi. In. the
opposite case, for example, for the central valley with
k = 0, the first-order term i pTk in Eq. (4) vanishes and
the second-order terms pV should be retained in the
course of the kp-perturbation procedure. For a model
case of the tight-binding Hamiltonian with the distortion-
independent transfer matrix, this leads exactly to the
Hamiltonian found by Kawamura [2]. It was shown by
Zempo, on the basis of this Hamiltonian, that for the
central valley the terms of order pV reduce the binding
energy of carriers to screw dislocations [11]. For this
reason we expect a reduction of the binding energy of
carriers to Coulombic impurities located at the dislocation
line for the central valley as well, but this reduction
should be much less than that for off-center valleys since
(V~/~k[ —Qa m*Ry*/6 && 1, where a is the lattice
constant.

The phenomenon of the topological interaction of im-
purities with dislocations discussed in this Letter has
not been investigated yet experimentally. One possible
manifestation of this phenomenon is blueshift of donor-
acceptor-pair recombination luminescence in diamond in
the vicinity of dislocations [12—14]. A detailed theo-

retical investigation into this particular case will be per-
formed in a forthcoming paper.
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