VOLUME 75, NUMBER 20

PHYSICAL REVIEW LETTERS

13 NOVEMBER 1995

Glass Transition Singularities

T. Odagaki

Department of Physics, Kyushu University, Fukuoka 812-81, Japan
(Received 28 February 1995)

A unified understanding is given for the Vogel-Fulcher (Tvg), Kauzmann (Tx), glass transition (75),
and crossover (7,) temperatures in supercooled liquids on the basis of a heuristic ansatz for trapped and
nontrapped diffusive motions, where these characteristic temperatures are related to the divergence of
various moments of the waiting time distribution for the nontrapped diffusive motion. Three predictions
(1) Tx = Tvr, (il) Tgsc(T) ~ const, and (iii) T s.(Ty)/Tes.(T,) = 2, where s.(T) is the excess entropy
per atom, are made, which are consistent with experimental observations.

PACS numbers: 64.70.Pf, 66.10.—x

Since the early 1920s, several characteristic tempera-
tures in supercooled liquids, which I call the glass transi-
tion singularities, have been defined or determined through
the analysis of dynamic and thermodynamic properties: the
Vogel-Fulcher (VF) point Tyr is a temperature obtained
by extrapolating the viscosity 1 in the supercooled state
above the glass transition point by 5 o« exp[DTvg/(T —
Tvr)] (D > 0) to lower temperatures [1]. The glass
transition temperature T, is usually defined as the tempera-
ture where calorimetric quantities show an anomaly [2].
Recently, T, is understood as the temperature at which
dynamical properties instead of thermodynamic properties
change their nature. For example, it is considered to
be related to the ergodic to nonergodic transition in
the density fluctuation in the mode-coupling theory [3].
In the trapping diffusion model [4], it is considered
to be a transition from the Gaussian to non-Gaussian
dynamics. Kauzmann [5] argued that there would be a
temperature Tx below which the entropy of a liquid in
the supercooled state becomes smaller than that in the
crystalline state and that this is possible only if the system
were kept in metastable equilibrium. From dielectric
measurements, Johari and Goldstein [6] distinguished two
relaxation modes (a« and B relaxations) below a certain
temperature 7Tjg. A crossover temperature 7, between
liquid-type and solid-type dynamics has also been argued
by Angell [7]. According to the present consensus,
the relation Tvp ~Tx < Ty < T, ~Tig <Tym (T
is the melting temperature) is believed to hold. The
ergodic-to-nonergodic transition point 7. predicted by the
mode-coupling theory [3] is supposed to be between T,
and T,,, in particular, between T, and T, for a soft-sphere
system.

In this Letter, I give a clear and unified view of the
characteristic temperatures Tvg, Tk, Tg, and T, which
are clearly defined in the present model. I base my
argument on the following observations of the dynamics
in supercooled liquids: Near the freezing point atoms
perform diffusive motion all the time as in the liquid
state. When they are further cooled, some atoms begin
a trapped-diffusive (or stray) motion for a while, and
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some time later a long nontrapped motion occurs, which
can be viewed as a jump motion. At much lower
temperatures, the fraction of atoms with trapped-diffusive
motion increases, and below a certain temperature all
atoms become trapped and nontrapped motion cannot
occur again. The structural relaxation is mainly caused
by the nontrapped motion.

The characteristic feature of these changes can be well
described by the waiting time distribution (WTD) ¢ (¢)
for the nontrapped diffusive motion, which is defined as
the probability density that an atom makes a jump motion
at time ¢ with no jumps between time ¢t = O and time ¢.
Note that one can define the WTD only when the trapped
and nontrapped motions can be distinguished. The WTD
acquires a long tail as the temperature is lowered. One
can identify three characteristic temperatures by various
moments of the WTD [8]. When the tail gets longer,
the second moment begins to diverge at some point (73),
while the first moment is finite. At a lower temperature
(T), the first moment begins to diverge. Finally, at much
lower temperatures below some point (7)), the WTD
cannot be normalized because of the long tail, namely, the
zeroth moment diverges. I argue that Ty, T, and T, can
be considered to be the VF temperature (Tvg = Ty), the
glass transition temperature (7, = 7T), and the crossover
temperature (T, = T»), respectively. I further show that
(1) the VF temperature must be identical to the Kauzmann
temperature (Tyvg = Tk), (2) the glass transition point is
determined by Ts.(T) as Adam and Gibbs [9] suggested,
and (3) Tysc(Ty)/Tgs.(T,) = 2 would hold. Here s.(T)
is the excess entropy per atom of the supercooled liquid.
Although predictions (2) and (3) are derived under a
certain ansatz, experiments currently available appear to
support these predictions.

The elementary relaxation process can occur in an area
which can provide the critical excess entropy S; required
for the process. The critical excess entropy S is supposed
to be close to kIln2, where k is the Boltzmann constant,
as proposed first by Adam and Gibbs [9]. Now suppose
the excess entropy per atom for a given system to be
s¢(T). Then the number of atoms in the area is given by
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n = S4/s.(T). The existence of these kinds of regions
has been proposed by many authors [10] as cooperatively
rearranging domains (or regions). In these regions, atoms
perform two types of diffusive motion: trapped diffusion
(or stray motion) and jump (nontrapped) motion. The
latter is mainly responsible for the structural relaxation.
To determine the jump rate of the nontrapped motion, I
follow the argument of the absolute rate process by Eyring
[11]. If one focuses on one particular atom in the domain,
its jump rate w leading to the structural relaxation at a
given temperature 7" and pressure would be written as

w = vwj,expl—nrAu/kT], (1)

where w), is the attempt frequency which is comparable
to the jump rate producing the trapped diffusive motion,
A is the excitation chemical potential per atom, and v
denotes the efficiency of moving out from the excited
state [11]. I denote vw, as wg, which serves as the time
scale of the jump motion, and note that w = wy holds in
general since Ay = 0.

The distribution p(Au) of the excitation chemical
potential A is determined by the distribution of excited
energy (chemical potential) levels of the region. Suppose
o (e€) is the density of possible excited levels at € through
which a transition might be possible. The probability
distribution for the excited energy is determined by the
probability that the system goes through the channel at
A, namely, it is given by the product of the probability
of a level being at Ay and the probability that the other
possible levels below A are not used [12]. Therefore,
p(Apu) is given by

pas) = Cotapexs| - [ . o@de|. @

where C is a normalizing constant. Using the mean value
theorem for integration, p(A ) can be written as

p(Awp) = Co(Ap)exp(—TAu), 3)

where & = fg“ o(e)de/Au is the mean value of o(e€).
Since the distribution function P(w) for the jump rate w
is related to p(Au) by

dAu

POw) = planon] | 0L |,

4

it is straightforward to show that P(w) is given by

(p+w?
P(w) — {0 T Whenw = wo, )

when w > wyg,

with
s (T
_ Kasdn) _ ©)
So

Here, 1 have neglected the dependence of & on Au and
approximated o[Au(w)] by @, since o[Au(w)] depends
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on w through Inw. It should be noted that the cutoff in
Eq. (5) appears due to Eq. (1) with A = 0. It should
also be emphasized that the jump rate distribution (5)
coincides exactly with that found from the molecular
dynamics simulation of soft spheres in the supercooled
state and employed in the trapping diffusion model
(TDM) of the glass transition [4] and with the lifetime
distribution of hydrogen bonds in a water model [13].
In the TDM, w;/wo ~ 20 was found by assigning the
B peak of the generalized susceptibility to the trapped
dynamics with a constant jump rate wy,.

It has been shown [14] that the WTD corresponding to
the jump rate distribution (5) is given by

Y(r) = (p + Dwol'(p + 2)y"(p + 2,wor), (1)

where I'(x) and y*(a,x) are the gamma function and
the Tricomi incomplete gamma function, respectively.
Thus it is easy to show that the mth moment 7, =
fo " (1) dt of the WTD is given by

= ——pf;Ll wo" whenp >m — 1, )
o whenp =m — 1,
namely, when p is reduced, the mth moment begins to
diverge at p = m — 1. In particular, the second and first
moments begin to diverge at p = 1 and p = 0. For
p = —1, the zeroth moment diverges, which indicates
that the WTD cannot be normalized.

One can expect significant changes in the dynamical
aspects of the structural relaxation at these points. In fact,
in the TDM of glass transition the stochastic dynamics of
a tagged particle which is determined by the jump rate
distribution (5) was studied on a lattice, and the following
conclusions were obtained: (1) The main relaxation time
diverges exponentially at p = —1, indicating that p =
—1 is the VF temperature [4,15]. (2) A transition between
Gaussian and non-Gaussian dynamics is expected at p =
0, which is considered to be the glass transition point 7,
[4]. (3) A kinetic transition is expected at p = 1, where
some of the dynamic characteristics change [4]. The
typical behavior of this transition is seen in the exponent
representing the decay of the non-Gaussian parameter,
which is unity for p = 1 and becomes less than unity
for p < 1. The self-part of the dynamic structure factor
S,(q, w) is also expected to show a change; for 0 <
p < 1, the first derivative of S;(q, @) at @ = 0 must be
singular and for p > 1dS;(q, w)/dw is not singular at
w = 0 [4]. I define the crossover temperature 7', by these
behaviors.

Comparing Eq. (6) and these results of the TDM, I
predict that (1) Tx = Tyg = Ty, since p = —1 indicates
se =0; Q) T, =T (p =0) satisfies kTys.(T,) =
So/7; and (3) T, = T> (p = 1) satisfies kT, s.(T,) =
283/ Therefore, for a given material, T's.(T) is the rele-
vant parameter for glass transition and Tys.(7,) ~ const
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and Tys(Ty)/Tes.(Ty) = 2 for experiments in which
So/@ can be kept constant.

These predictions can be tested by experiments. The
first prediction Tx = Tvr has long been expected, though
some experiments show differences in these two tempera-
tures [16]. Although this ambiguity is inevitable since T
and Tyr are defined by extrapolation, the present model
predicts that Tx and Tvg must coincide if they are defined
properly.

The second prediction that the glass transition point is
determined by T's.(T') and not by s.(T') was first given by
Adam and Gibbs [9]. This statement has recently been
tested by Takahara, Yamamuro, and Suga [17], in which
they studied the pressure dependence of 7, up to 198 MPa
of pressure of 1-propanol and 3-methyl-pentane and found
little dependence of T,s.(7,) on pressure. According to
their analysis, the activation chemical potential changes
only 10% even for the highest pressure they studied. Thus
we expect that o did not change much in their experi-
ment, and the present prediction can be applied to their
experiment. The third prediction Tys.(Ty)/Tgs.(T,) = 2
can also be tested by experimental data. It is not clear
at this moment that 7', defined above is identical to those
observed and/or defined previously. Angell [7] suggested
T./ T, ~ 1.3 for various glass forming materials. Assum-
ing that 7, is more or less the same as that defined by
Angell and using the data in Fig. 2(b) of Ref. [7], I found
for polypylene carbonate, tri-«-naphtyl benzene, 3-methyl
pentane, H,SO4 - 3H,0, and ethanol that the ratio is in
the range 2.0-2.2. Here T,/T, = 1.3 is assumed ex-
cept for H,SO4 - 3H,0 for which 7, /T, = 1.2 is used.
For Ca(NOs), - 4H,0 and KCI - 2BiCl (7, /T, = 1.2 is
used), the ratio is 2.4—2.5. In view of the ambiguity in
determining the crossover temperature, no firm conclusion
can be drawn at this stage, but the data do seem to be in
rough agreement with the present prediction.

In conclusion, I have presented a unified understand-
ing of the glass transition singularities on the basis of
an heuristic argument and have given three predictions
which seem to be in rough agreement with experiments.
It should also be noted that the slow relaxations in super-
cooled liquids have been well explained by the TDM; the
a relaxation is due to the nontrapped diffusive motion,
and the trapped diffusive motion gives rise to the 3 re-
laxation [4]. Although there is no abrupt change in the
microscopic dynamics nor in the form of the WTD, the
nature of dynamics can show transitions when the various
moments of the WTD begin to diverge.

It is important to note that this view of the glass
transition singularities based on the singularities of the
WTD does not depend on the details of the mechanism
of the structural relaxation, and is considered to be fairly
universal and can be applied to glass transitions in general.

Prediction (3) can be tested directly by experiments,
since the non-Gaussian parameter can be measured by
the small angle neutron scattering and thus 7, can

be determined without ambiguity. The transition at 7,
can also be observed through the behavior of S(q, w)
near w = 0. I strongly urge that these experiments be
performed.

Finally, I would like to mention the cooling rate
dependence of the glass transition point. In the present
approach, this dependence can be understood from the
cooling rate dependence of the density of excited levels
o(e) and the excess entropy s.(7). It will be plausible
to assume that the dependence of o(€) is much weaker
than that of s.(T). For slow cooling s.(T) stays at a
rather higher value till the temperature gets closer to T
and decreases rapidly near Ty, and s.(T) for fast cooling
decreases more gradually. This accounts for the fact that
the glass transition point for fast cooling is higher than
that for slow cooling. I also expect that Ty, T, and T,
come closer for slow cooling.
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