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Quantum Breaking of Elastic String
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Breaking of an atomic chain under stress is a collective many-particle tunneling phenomenon. We
study classical dynamics in imaginary time by using a conformal mapping technique, and derive an
analytic formula for the probability of breaking. The result covers a broad temperature interval and
interpolates between two regimes: tunneling and thermal activation. Also, we consider the breaking
induced by an ultrasonic wave propagating in the chain, and propose to observe it in a scanning
tunneling microscopy experiment.
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Among various examples of quantum decay in con-
densed matter [1] of special interest are those where the
tunneling system is strongly coupled to a macroscopic en-
vironment. Several such systems were studied, includ-
ing metastable current states of Josephson junctions [2,3],
transport in tunnel junctions [4], and quantum diffusion
and properties of two-level systems coupled to a thermal
bath [5]. Our purpose here is to discuss yet another case
where decay is a many-particle effect: breaking of elas-
tic string stretched by an external force. The coopera-
tive nature of decay in this problem was emphasized by
Dyakonov [6]. In this paper we study the dynamics of this
system in imaginary time and show the breaking results
from two distinct processes with different time scales: fast
"virtual breaking' which initiates the tunneling and slow
many-atom motion that actually controls the decay rate.
This picture is used to formulate quantitative theory.

Our central example will be a polymer chain tom by
an external force applied to its ends. At finite tempera-
ture and small force the molecule breaking is thermally
assisted, with the breaking rate w —exp( Ep/T), whe—re
Fo is the energy of one bond. However, at low tempera-
ture the breaking will result from quantum tunneling un-
der the barrier of height Fo and of the effective length set
by the stretching force. In this regime the breaking rate is
temperature independent and depends mainly on the force.
The saturation of the limiting stress at small temperature
has been reported [7].

Our model of the polymer will be a 1D chain of
atoms with the nearest neighbor interaction U(x). The
interaction U(x) is repulsive at x ~ ap and attractive at
x ~ ao, like the 6-12 model potential. The Hamiltonian
of the system is

" + U(tIt —4-i) + f(tIi —tItv),
k=], ,N—

where m is atomic mass and q& are the atoms' co-
ordinates. Mean spacing a is related to the force by
f = U'(a). For small f we can use the harmonic ap-

W = 6 exp( 2Eppc/vrhf )—, (2)

where 5 = cu~e '/ is the probability of a single atom
tunneling at one atomic spacing. Let us note an agreement
with the qualitative estimate given before. We generalize
this result to a finite temperature and derive an exact
formula that covers a broad temperature range, including
thermal activation at high temperatures. We also consider
the breaking due to alternating tension which corresponds
to ultrasonic waves. Finally, we shall discuss possible
experiments.

Zero-temperature calculation. We shall use the fol-
lowing picture of tunneling. The energy U(x) of a bond

proximation U(a) = Ep + —mcop(a —ap) /2, where a
is close to the spacing ao of the nonstretched chain.

We consider the limit of small tension, when the
tunneling results from coherent motion of many atoms. A
simple argument that allows one to estimate the number
of moving atoms and the exponent in the breaking
probability was given by Dyakonov [6]. During the time
of tunneling t, acoustic waves propagate at the distance
ct, where c is the sound velocity. At small tension,
the time t is big, and thus the mass involved in the
tunneling, m, = pct, is much bigger than the single atom
mass. (Here p is the density of the chain. ) One can
then describe dynamics approximately as tunneling of
the mass m. under a triangular barrier U(x) = Ep —fx,
where Ep is the energy of the broken bond and f is
the tension. Then it is straightforward to estimate the

1/2 3/2 &/2 &/2
action S = f m~ Ep and the time t = f ms Ep
By solving the latter equation together with the self-
consistency relation m. = pct, one finds t = pcEp/f,
m„= p c Ep/f, which gives the probability of breaking
W = exp( —const X Eppc/Itf ) This argum. ent shows
that collective effects are essential, as m grows at small
tension. In this form, however, it only gives a rough
estimate of ln W, leaving an unknown constant in the
exponent to be determined by a more precise calculation.

In this paper we derive a formula for the probability of
breaking
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falls off as its length x exceeds several angstroms. There-
fore, because of zero-point fluctuations, the bond length
occasionally makes excursions to a large x state where the
restoring force is very small with the frequency of excur-
sions = A. We call such an excursion virtual breaking,
since it does not lead to breaking at zero tension. The
time scale of excursions is coD . If there were no tension,
after every such excursion the bond would return back to
its equilibrium length. However, in the presence of the
force stretching the chain, after the bond is virtually bro-
ken, the ends of the tear can start moving apart in the clas-
sically forbidden region, until the distance between them
reaches = Eo/f, where the barrier ends and the bond is
really broken. This second stage takes much longer than

cuD, as it involves motion of many atoms at large dis-
tance. Thus, we have two subsequent stages of tunneling:
(1) fast virtual disappearance of one bond and (2) slow
collective motion under applied force while traversing the
classically forbidden region. After we use this picture to
do the calculation, we check self-consistency of the as-
sumptions, and confirm the validity of the approach for
the tension small on the atomic scale.

Because of the large difference of the time scales of
the stages (1) and (2) one can formulate the theory by
analogy with the Franck-Condon argument for transitions
in molecules, which states that the phonons are slow,
so that electronic transitions are "vertical. " In the chain
breaking the fast process is the virtual breaking, and the
slow one is the underbarrier motion of the many-atom
fragments of the chain on both sides of the tear. Clearly,
since the fast stage is essentially one particle, it does not
depend on the tension and it only contributes a constant
prefactor = b, ' of the exponentially small amplitude due
to the slow stage. Therefore, we can write the rate of
transition to the broken state as

5, [q] = [9f —0(r —t )U(q, —
q, )]dt, (5)

where j is the number of the broken bond. The integral
(4) is taken over paths going from t = —~ to t = ~, i.e.,

over all states tq&(t)) of the chain. Since at small tension
the tunneling involves only long wavelength distortions,
we go to the continual limit

2

5 = —u + u —fu, dxdt, (6)
2 2

where x(k) = aok, and the atoms' coordinates qk are
written through the displacements relative to the equi-
librium positions q), (t) = u(x, t) + aok. [The action (6)
is accurate outside the two space-time regions marked in
Fig. 1. After evaluating the saddle-point action we will
see that the contribution of these regions is insignificant. ]
Together with the boundary condition corresponding to
the broken bond at x = 0, this defines a linear problem.
We solve it and evaluate the functional integral by the
saddle-point method.

Beginning from here we use the units 6 = p = c = 1,
and recover the usual units only when necessary. The
classical equation of motion obtained from Eq. (6) is

(3 u/dx + 8 u/Bt = 0.

We assume that the breaking occurs far from the ends
and treat the chain as infinite. Then Laplace's equation
is supplied with the following boundary conditions: (i)
u(x, t) uo(x, t) = f, at (x(, )t) » r, i.e., the chain is
uniformly stretched away from the tear; (ii) Bu/Bx = 0
at x = ~0, —7. & t & ~, i.e., the ends of the tear at
x = 0 are free during the tunneling. By analogy with
2D electrostatics, the boundary value problem can be
solved by a proper conformal mapping. For that, let us
introduce the complex variable z = x + it and consider
the analytic function

W = Deut) &P(0) I y(t)) dt,
w(z) = (z + V'z' + r')/r.

where P(0) is the ground state of the nonbroken chain
and the evolution P(t) is according to the Hamiltonian
(1) with one bond removed: P(t) = exp( —iaaf't/Fi)f(0),

—U(x~ —
x~ )) + Eo. (We add Eo to assure

energy conservation. ) The reader may note the analogy
with the method of sudden switching [8].

Following the usual treatment [9], we consider the
tunneling as a motion in imaginary time: First, we
evaluate the overlap in (3) at imaginary values of t, then
continue it from the upper half plane down to the real
axis and compute the integral over t by the saddle point
method. To compute the overlap (P(0)~P(it)), we write
it as the path integral

1
X tq) exp( ——s t. l s) (4)

Here 5 is the classical action of the chain with one bond
broken during the time interval [—i r, i r]:

The cut [—ir, i~] in the z plane is mapped on the unit
circle ~w = 1, and thus we come to Laplace's equation

FIG. 1. Atoms world lines in the instanton. Continuum
theory holds outside the two marked regions.
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in the domain ~w ~
~ 1 with the boundary conditions boundary value problem is solved by

(i) uli i»i = uo(w),
8Ll

(ii) = 0. (9) u(w) = ln
t'f f(~w —Qw)) (~w + gw2) )

(12)2~T ~(~w —qw, ) (~w + qw, ) ~

It has a solution

u(z) =
2 f7. Re(w + 1/w) = f Res z2 + rz (10)

(see Fig. 1). Because of conformal invariance, the ac-
tion can be evaluated in the w plane: S,[u —uo] =
—nf r /2. Then we continue S, to the real axis, sub-
stitute it into Eq. (3), compute the integral

dr exp( —srf r /2 —2iEor),

and get Eq. (2) for the probability.
With the result (10), we can check the self-consistency

of the method. During the tunneling, the width of the tear
u(x = +0, t) —u(x = —0, t) =(2f/pc)gr2 —tz is es-
timated as Eo/f, as the saddle-point evaluation of the
integral (11) sets r = 2pcFo/~f2. If the tension f is
small in atomic units, the tear is much wider than the in-
teratomic spacing, except for t very close to ~ r, and thus
indeed it can be described by the free end boundary condi-
tion at the cut. Finally, we note that the optimal tunneling
time 7. is much longer than the virtual breaking time ~D',
which justifies the assumption of a large difference of the
time scales of the two stages of breaking.

Finite temperature. —The temperature dependence of
the breaking begins very early, at the temperature set
by the inverse tunneling time, T, = It/r = hf /pcEo
If the tension is weak, T, can be much smaller than
the usual temperature hcuz of transition to the thermally
assisted tunneling. For such temperatures the breaking
can be studied by a generalization of the zero temperature
calculation.

The functional integral treatment of tunneling at fi-

nite temperature amounts to integrating over periodic tra-
jectories with the imaginary period ip = t/T [9]. For
the chain, we have to evaluate the path integral Eq. (4)
taken over all functions u(z) periodic in the z plane
with the period i p: u(z + ip) = u(z). Repeating the
steps that lead to Laplace's equation, we get a bound-
ary value problem for the function u(z) whose normal
derivative vanishes near a periodic system of cuts, z
H [—ir + ipn, ir + i pn]. (The condition at z = ~ re-
mains unchanged. )

Corresponding conformal mapping can be constructed
in two successive steps. First, let us consider the function

g(z) = exp(2vrTz) that transforms the strip 0 & Imz &
p to the whole complex plane, and maps z = ~ to two
points: g = 0, g = ~. The cut is mapped to the arc
of the unit circle that goes from cr = exp(2vriTr) to
n counterclockwise. The second function we take is
w(rt) = (rt —a)/(ng —1). In the w plane the two
images of g = ~ are w~ = n, w2 = n, and the cut
goes along the negative real half axis w ( 0. Then the

To obtain the probability W, we take i 7 back to the real
axis, substitute S, into Eq. (3), and compute the integral

e2i E07 d &

cosh (~Tr)
2» r(~, )r(~ )

2~T r (2A)
(14)

with A = A ~ iEo/nT This e.xpression covers a large
temperature range, up to T = coD. Asymptotically, by
using the Stirling formula, at high temperature we get an
Arrhenius law W = Ae '/, and in the opposite limit
Eq. (14) matches Eq. (2).

Breaking due to alternating tension. —Now, let us
discuss how the breaking can be stimulated by a sound
wave. Local tension in the wave varies along the string,
and so does the breaking probability. To study the spatial
dependence, let us put a phase @ in the wave

uo(x, t) = (fo/pcs) co[st( x/ c t) + P], (15)

where fo is the tension amplitude, and then study breaking
at x = 0 at different values of P. In the z plane

uo(z) = (fo/pcI), )Ree'~ ' (16)

where I~ = 0, /c. Let us assume zero temperature, then
we have Laplace's equation for the displacement field

u(z) with the boundary conditions identical to that we had
in the T = 0 constant force problem. By the conformal
transformation Eq. (8) we go to the domain ~w~ ~ 1

in the w plane, z = r(w —1/w)/2, where we get the
boundary value problem (9) with uo(w) corresponding to
Eq. (16). A solution is readily obtained by writing the
Laurent series for u(w) and uo(w), solving separately for
each term, and then collecting the series

2fo +1
u(w) = uo(w) + sin@ Re P J (iAr),

m=i w

where J (x) are Bessel functions. The action is

S [u —uo] = 27r sin @ g m~J (i—Ar)~ . (18)
m=1

with the standard branch of the square root. Computation
of the action S,[u —uo] is facilitated by comparing
with the analogous problem of 2D magnetostatics: two
opposite charge magnetic monopoles situated at the points

near a superconducting slit going along the real
axis, from 0 to the left. In this formulation, the action
corresponds to the interaction energy of the monopoles
and their images. Straightforward calculation gives

S,[u —uo] = A ln cos (vrTr), A = f /2nT (13.)
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This general form simplifies in the two limits:

sin cb, Ar « 1,
S 2 2

re ' A~ && 1.pcs
The first expression is what one gets for constant tension
with the local value f = fo sing. In the second case
(high frequency) the probability of breaking is

(19)

W —exp[ —(Eo/RA) In(EopcA/fo sin P)]. (20)

Let us note a similarity between Eq. (20) and the ion-
ization rate of an atom in a low frequency electric field

f cos At: W —f ", where n = Ry/RA is interpreted as
the number of absorbed quanta and f as the single quan-
tum absorption rate. This interpretation stands meaning-
fully for the string as well.

To summarize, at A « A, = fo/pcEo the breaking
occurs at the nodes, and the breaking rate is staticlike.
At A ~ Ao the frequency dependence begins and the
probability sharply increases following Eq. (20). The
spatial dependence practically vanishes in this limit, since
many cycles are repeated during the tunneling.

Discussion of experiment Beyo.n—d a theoretical inter-
est, the quantum problem of string breaking is relevant
for the physics of polymers, since at low temperature
this process determines maximal stress o. „that a poly-
mer material can sustain. At high temperature, the break-
ing is thermally assisted: o,„(T) —expE. o/T. At low
temperature, a saturation of the raise of o„(T) was .re-
ported [7], however, the relation with tunneling has not
been clarified. It would be of interest to check whether
the saturation indicates tunneling by using, e.g. , the con-
ventional technique of isotopic substitution. Since ln W
scales as I/pc, there is an isotope effect in the quan-
tum regime: ln W —~M, which disappears in the ther-
mally assisted regime. Also, one could look at break-
ing enhancement in the presence of an alternating stress
caused, e.g. , by a microwave radiation. In this case, the
characteristic feature to observe is the threshold frequency
Ao where the breaking enhancement described by our
Eq. (20) begins. The threshold is set by inverse tunnel-

ing time t ' = f /pcEo, and thus it is a function of the
tension f and can be much lower than Debye's frequency
~D, the characteristic threshold for the frequency effect in
the thermally assisted regime.

Also, in light of recent progress in manipulating single
atoms by a scanning tunneling microscope (STM) [10], it

is of interest to think of an STM experiment with a single
polymer molecule suspended between the surface and the
STM tip acting as a probe. In this setup one can study
the molecule breaking at small and at large temperature,
where our calculation predicts different regimes. In
addition, there is a possibility of combining constant force
with an ac tension field caused, e.g. , by an ac signal on
the tip, and of looking at the resonance effects related
with exciting a standing ultrasonic wave in the molecule.

To conclude, we have studied breaking of a polymer
chain, and derived an analytic expression for the breaking
probability that describes transition from quantum tunnel-

ing to an Arrhenius law. Also, we have studied breaking
induced by an ultrasonic wave, and discussed opportuni-
ties for experiment.

We are grateful to M. I. Dyakonov and S.E. Korshunov
for valuable and illuminating discussions. Research at the
Landau Institute is supported by ISF Grant No. M9MOOO.
The research of L. S.L. is supported by an Alfred Sloan
fellowship.

[1] See the review: Quantum Tunneling in Condensed Media,
edited by Yu. Kagan and A. J. Leggett (Elsevier, Amster-
dam, 1992).

[2] A. O. Caldeira and A. J. Leggett, Phys. Rev. Lett. 46, 211
(1981).

[3] V. A. Ambegaokar, U. Eckern, and G. Schon, Phys. Rev.
Lett. 4$, 1745 (1982); A. Schmid, Phys. Rev. Lett. 51,
1506 (1983).

[4] G. Schon and A. D. Zaikin, Phys. Rep. 19$, 237—412
(1990).

[5] A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A.
Fisher, A. Garg, and W. Zwerger, Rev. Mod. Phys. 59,
1 (1987); M. P. A. Fisher, and W. Zwerger, Phys. Rev. B
32, 6190 (1985).

[6] M. I. Dyakonov, Fiz. Tverd. Tela (Leningrad) 29, 2587—
2594 (1987) [Sov. Phys. Solid State 29, 1493 (1987)].

[7] R. L. Salganik, A. I. Slutsker, and Kh. Aydarov, Dokl.
Akad. Nauk SSSR 274, 1362 (1984) [Sov. Phys. Dokl.
29, 136 (1984)].

[8] G. D. Mahan, Many Particle Physics (Plenum, New York,
1990), 2nd. ed. , Sect. 4.3.E.

[9] J. S. Langer, Ann. Phys. (N.Y.) 41, 108 (1967); S.
Coleman, Phys. Rev. D 15, 2929 (1977); I. Affleck, Phys.
Rev. Lett. 46, 388 (1981).

[10] D. M. Eigler and E. K. Schweizer, Nature (London) 344,
524 (1990).

373


