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Synchronization in a Lattice Model of Pulse-Coupled Oscillators
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We analyze the collective behavior of a lattice model of pulse-coupled oscillators. By means of
computer simulations we find the relation between the intrinsic dynamics of each member of the
population and their mutual interactions that ensures, in a general context, the existence of a fully
synchronized regime. This condition turns out to be the same as that obtained for the globally coupled
population. When the condition is not completely satisfied we find different spatial structures. This
also gives some hints about self-organized criticality.
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The collective behavior of large assemblies of pulse-
coupled oscillators has been investigated quite often in the
last years. Many physical and biological systems can be
described in terms of populations of units that evolve in
time according to a certain intrinsic dynamics and interact
when they reach a threshold value [1]. Although it was
known long ago that the members of these systems tend to
have a synchronous temporal activity, a rigorous treatment
of the problem has been considered only in the last
decade [2—4]. Up to now, the most important efforts have
been focused on systems with long-range interactions,
because in this case analytical results can be derived by
applying a mean-field formalism. Relevant is the work
by Mirollo and Strogatz (MS) [4] who discovered under
which conditions mutual synchronization emerges as the
stationary configuration of the population. Later the study
was generalized to other situations [5—10].

When the oscillators form a finite-dimensional lattice,
where only short-range interactions are allowed, the spec-
trum of behaviors is more complex. For instance, some
recent papers have related lattice models of pulse-coupled
oscillators to models displaying self-organized criticality
(SOC) [11—15], systems which self-organize, due to its
own dynamics, into a critical state with no characteristic
time or length scales [16). Of particular interest for us is
the model proposed by Feder and Feder (FF) [17] to study
stick-slip processes in earthquake dynamics. In such a
model each cell of a 2D square lattice is described phys-
ically in terms of a state variable E(t) (hereafter called
energy) that evolves linearly with time. Once the energy
of a cell reaches a threshold value (E; j ~ E, = 1) it be-
comes critical and "fires" transferring energy to its nearest
neighboring cells according to the following rules:

E„~E„„+e,
E;~ ~0, (1)

where e is the strength of the coupling In turn, some of
these neighboring cells may become critical, generating an
avalanche that propagates through the lattice. When one
avalanche is triggered, the intrinsic dynamics is stopped,
and only when it is over does the driving act again. In
this way, there is a clear separation of two time scales.

By identifying the state variable E with a voltagelike
magnitude, one can establish an analogy between the FF
model and some models of integrate-and-fire oscillators.

Without any other ingredient the FF model displays,
in the stationary state, and for open boundary conditions,
relaxation oscillations (RO) which give rise to spatial
structures formed by large assemblies of units, all with
the same phase. In this sense we could talk about a
macroscopic (local) degree of synchronization. However,
when a dynamical noise is added to the system new
collective behaviors appear, since the synchronized state
is no longer an attractor of the dynamics. For instance, for
a = 0.25 [11),the distribution of avalanche sizes follows
a power-law decay characteristic of SOC.

In the short-range models described above the energy
of each oscillator varies with a constant driving rate

f(E) =—dE/dt = C. The analysis has been extended to
linear driving rates [12] finding new conditions to observe
RO even in the presence of noise. It would be interesting
to consider a more general context, where f'(E) can
take an arbitrary shape with the only restriction being
f(E) ) 0. There is another underlying hypothesis in (1)
that restricts the range of interest of these models: the
strength of the coupling e is constant. In many studies of
biological pacemakers it is assumed that the response of a
cell due to an external stimulus is a function of the phase,
6(@),which depends on the current state of the oscillators
[18,19]. The phase shift induces an energy shift a(E)
[hereafter called the energy response curve (ERC)] that,
in general, is a nonconstant function of E. Our goal is to
investigate a wide variety of models with arbitrary ERC
and driving rate f(E) beyond those considered in previous
works. Although in such a general situation a broad range
of different regimes can be observed, we will focus our
study on the conditions required for the system to develop
a fully synchronous stationary state, emphasizing the
relevance of the response of a given oscillator at its reset
point, a(E = 0). The analysis also provides information
about the possible nature of SOC. Our interest mainly
concerns coupled map lattice models, but to start the
discussion a mean-field model is introduced to clarify
several dynamic aspects.
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6(t —ti) dt = 1.

dF.

p ~(E)
' (4)

where ep is defined to ensure that y(1) = 1. By substitut-
ing into (2) we get

dy; f(E )
dt KE;

= sp
' + ep6(t —t)). (5)

Now the evolution of the system is described in terms
of a new variable y for which the coupling is constant.
A case of particular interest is that of a zero advance
at the reset point [e(E = 0) = 0]. In such a case, this
transformation is well defined if the energy transferred
Vy 4 0 is constant (ep) except for y = 0, which is
exactly zero. This condition plays the role of a refractory
time, which provokes that the units that have fired have
zero phase at the end of the interaction process.

A perfect analogy can be established with the problem
studied in MS [4]. They showed that for a constant
positive coupling, no matter how small, the synchronized
state is an absorbing state of the dynamics if the driving
rate is positive and its first derivative negative. By
applying theses conditions to the new function

y(E)
g(y) = ep

( )
~ (6)

we find the following relation between the driving rate and
K(E) that ensures the synchronization of the population:

-(E) y(E) -(E)
This means that given the features of the driving rate it
is always possible to find the oscillators firing in unison
provided one chooses the suitable ERC.

The interesting point is to know whether the mathemat-
ical result we have derived above can be extended to net-

Let us consider a system of globally coupled oscillators
which interact through a given K(E). The dynamics of
each unit is given by

dE;' = f(E;) + X(E;)6(t —t, ) (2)

plus the reset condition for E; ~ 1. Here t~ denotes the
time at which unit or group j fires. In this description
both time scales (driving and coupling) appear in the
same equation. We also could consider another equivalent
description where both time scales are separated such as
in (1), but this fact implies to substitute K(E) by e(E)
related through

E+~(E) d~i t,
'

-(E') (3)

To go from K(E) to e(E) is trivial, but the inverse implies
to deal with an integral equation that, in general can only
be solved numerically. Now, it is simple to derive suf-
ficient conditions to ensure perfect entrainment between
both oscillators. The method consists of applying the fol-
lowing transformation, used in different contexts by sev-
eral authors [8,20]:

works with short-range interactions. We have considered
FF coupling (1) with e(E) and a nonconstant driving rate
with dynamical noise [21]. It is important to realize that
in contrast with mean-field models, where synchroniza-
tion emerges in a process where clusters of oscillators of
increasing size merge with each other (absorption process)
and never break up, in a coupled map lattice model big as-
semblies of oscillators with the same phase (which even-
tually may break up) are generated through large RO that
sweep the whole lattice (avalanches of the size of the sys-
tem). Then for constant, instantaneous couplings, and due
to the different nature of both mechanisms, the conditions
required to find synchronization or RO are different [12].
However, the situation may change if one considers a non-
constant ERC. To analyze this new situation it is conve-
nient to apply the same arguments discussed in [12], but
now for a state-dependent coupling. For a square lattice
with open boundary conditions, it is not difficult to show
that a necessary condition to observe RO of the size of the
system is

E[1 —@(4e(0))] + 2e[1 —@(4a(0))] ~ 1, (8)
where the energy and the phase @ are related through the
following expression:

dF.'"'= . Z(E)
First of all, we observe the relevance of the response of

a cell at the reset value. In general, a nonzero advance at
this point [e(0) 4 0) gives rise to a spatial distribution
of phases after an avalanche; it is only under these
conditions that SOC can be obtained [11]. On the other
hand, it is clear that if ~(0) = 0 the inequality (8) is
always satisfied for any driving rate and ERC. This
means that the appearance of RO involving all the sites
implies a perfect synchrony between all the elements of
the lattice, boundaries included. However, (8) does not
ensure the existence of those RO. It is a necessary but
not a sufficient condition for the system to achieve a
complete synchronization. We will check by simulations
that condition (7) is, as in the long-range case, sufficient
to produce synchrony.

Before giving evidence of this fact, we want to men-
tion some conclusions that can be extracted from this
result. Although, in general, one cannot map straightfor-
wardly results from mean-field theories to coupled map
lattices models, for these particular systems and as long
as synchronization in concerned, conditions (7) which are
strictly derived in a mean-field frame can be applied to
short-range systems. This assumption is also in agree-
ment with a conjecture proposed in [4] for the special case
of f '(E) ( 0 and K'(E) = 0.

Several models have been considered in our simula-
tions, finding complete agreement with the theory. In par-
ticular, we have performed simulations for Peskin's model
[22], where the driving rate is given by

y(E) = yPC —E), (10)
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FIG. 1. Number of avalanches (filled) and time in period
units (hollow) that a 32 X 32 lattice needs to get a complete
synchronization as a function of y —y' in a log-log scale.
The symbols are averages over 25 realizations and the error
bars (which for the avalanches are of the size of the symbol)
correspond to the standard deviation. The straight line shows
the (y —y') ' behavior.

where y gives the slope of the driving rate and K = (1—
e ~) '. Starting from a random distribution of phases
and for y ) 0 [f'(E) ( 0] we have observed that the
population always synchronizes when Z(E) is a positive
function of E with K'(E) ~ 0, provided that e(0) = 0.
However, for y = 0 a monotonously increasing e(E) is
needed.

To complete this idea we have studied the time required
for the population to synchronize, starting with random
phases between 0 and 1, for an ERC given by

r(E) = coy'(K' —E),
where K' = (1 —e ~) ' in a 32 X 321attice. We have
plotted our results in Fig. 1 for open boundary conditions.
There we can see how this time and the number of
avalanches diverge as the difference between y and y'
approaches zero. We have also checked a driving rate
and an ERC both given by power laws, and the results
are very similar; the time required to synchronize the
system grows as (n —n') ', where n and n' are the
exponents of the driving rate and of the ERC, respectively.
Finally, we have simulated a driving rate of type (10)
with a power-law ERC. For an exponent o.™1 the
system synchronizes for any value of y; in particular, the
time needed to obtain the fully synchronized state grows
exponentially as e ~/ when n' = 1. On the other hand,
for n' ( 1 there is only a range of values of y for which
we get synchronization.

All these results are in agreement with our prediction
(7). At this point it is important to remark that when the
driving and the ERC have the same functional dependence

on F. the inequality can be satisfied for all F and the
divergence of the time appears when both curves f'/f
and K'/K approach each other. However, when the
dependence is different both curves can cross, and this
leads to a more complex behavior. Finally, the case of
a power-law ERC with u' ~ 1 is very important because
in this case the transformation (4) cannot be performed
and therefore no mapping with the MS result can be done;
nevertheless, (7) still represents the sufficient conditions
to get a fully synchronized regime. Lattices with periodic
boundary conditions have also been checked, and the
conclusions are the same as for open ones; furthermore,
the time required to synchronize scales in the same way.

We have also investigated the behavior of the model
when one does not expect synchronization for a constant
ERC, provided that e(E = 0) = 0. First of all, let us
recall the behavior of two coupled oscillators [4]. The
phase of the one oscillator when the other one arrives to
the threshold transforms according to

4o 1 —4[E(@o) + ~] (12)

provided that E(@o) + e ~ 1, otherwise the oscillators
synchronize. This transformation has always at 1east
one fixed point Po which leads to different behaviors
depending on the slope of f(E). Thus, for f'(E) (
0 (VE), Po is unique and unstable, and the two oscillators
will always synchronize for any positive value of e
[4]. However, for f'(E) ) 0 (VE) the stability of the
fixed point changes, and Po becomes an attractor, which
means that the oscillators can either be phase locked,
when e ( 1 —E(@o), or synchronized, otherwise. For
Peskin's model (10) @o corresponds to

Po = 1/2 —(1/y)sinh '[a sinh(y/2)]. (13)

This result enables us to perform a qualitative analysis
of the lattice model with nearest-neighbor interactions.
Starting from a random distribution of phases, and only
for periodic boundary conditions, the oscillators will tend
to be locally synchronized or phase locked, depending
on their phases and the parameters' values. This makes
us suspect the existence of well-defined spatiotemporal
structures of phase-locked oscillators in the stationary
state, of the same kind as those described in [23], for
which simple return maps can be written. The most
simple of these configurations one can imagine is a
chessboard lattice where "black" sites have the same
value of the phase (Po) when all the "white" sites arrive
to the threshold. Once the white ones have fired, the
black ones are driven up to the threshold value and one
gets the same structure as before with a phase @o that
transforms according to (12) replacing a by 4e. This
means that there exists a fixed point for this structure,
whose value is the same as that obtained from (13)
replacing e by 4e, that is, an attractor for the dynamics
of the lattice. It is important to remark that this structure
is characterized by the fact that a given oscillator is phase
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locked with its four neighbors. Other simple structures
arise when an oscillator can be synchronized with one
neighbor and phase locked with the remaining ones (all
these neighbors with the same phase), and so on, as far as
the number of synchronized neighbors is constant through
the lattice. What we have observed in our simulations is
that these structures are attractors of the dynamics within
different domains of the space of initial conditions. The
corresponding fixed points are given by (13) changing
e by 4e, 3a, or 2e. Nevertheless, these structures are
not the only attractors, since more complicated patterns
involving more than two different phases also can be built.
Among of all these configurations, the "chessboard" one
is the most relevant because it has the larger domain of
attraction, although the relative weight depends on the
parameters as well as on the system size, and it is the
most stable one in the sense that small fIuctuations break
the other structures in its favor [24]. We want to point out
that these phase-locked states are characteristic of lattice
models with short-range interactions, since they have
no counterpart with models of all-to-all pulse-coupled
oscillators.

Finally, we believe that the tendency of our model ei-
ther to synchronize or to form phase-locked structures
allows us to go one step further in the current understand-
ing of SOC phenomena. Middleton and Tang [13] no-
ticed that SOC appears, in a uniformly driven model and
a slightly different coupling, as a consequence of margin-
ally stable phase locking between neighbors. We have
shown how this marginal stability [which corresponds to
the equality in the right hand side of (7)] is broken in favor
of a synchronization or a stable phase locking depending
on the driving rate and on the ERC. Thus, although fur-
ther investigation along this line would be required, one
can conjecture that SOC is critical in the sense that bal-
ances the tendency into one or another direction.

In this paper we have shown how it is possible to re-
duce a general population of biological oscillators to a
simple model with constant ERC that allows analytical
results for all-to-all coupling by means of a very easy
transformation. Surprisingly, short-range simulations ver-
ify the same conditions for the synchronization that the
long-range version of the model. Moreover, we also find
new states of the system with no analogous states in the
long-range case. These behaviors allow us to give some
hints about the origin of SOC.
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