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Global Diffusion in a Realistic Three-Dimensional Tine-Dependent Nonturbulent Fluid Flow
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We introduce and study the first model of an experimentally realizable three-dimensional time-
dependent nonturbulent Quid How to display the phenomenon of global diffusion of passive-scalar
particles at arbitrarily small values of the nonintegrable perturbation. This type of chaotic advection,
termed resonance induc-ed diffusion, is generic for a large class of flows.

PACS numbers: 47.52.+j; 05.45.+b

Dynamical systems that arise in problems of par-
ticle diffusion [1] in incompressible and nonturbulent
fluid flows, apart from being of theoretical interest, hold
much relevance for technological applications. Proper-
ties of emulsions, dispersion of contaminants in the at-
mosphere, and ocean, sedimentation, and mixing are just
a few examples. In comparison with the present state
of knowledge of chaotic advection, mixing and trans-
port in two-dimensional [2], or three-dimensional time-
dependent [3] flows, little is known for three-dimensional
time-dependent flows.

The strobed dynamics of fluid parcels —so-called pas-
sive scalars —in three-dimensional time-dependent in-
compressible fluid flow is qualitatively equivalent to the
iteration of a three-dimensional volume-preserving map.
A few years ago we began to investigate nearly integrable
classes of such maps —which we have termed I iouvil-
lian maps —in search of possible generic features [4].
We found that we could characterize Liouvillian maps
in a similar manner to Hamiltonian dynamical systems,
by using the number of slow action and fast angle vari-
ables that, in the integrable limit, remain invariant and
rotate uniformly, respectively. The cases having one or
two of such actions were found to be particularly inter-
esting. For the one-action case, which has been shown to
be generic for a class of flows [5], a Kolmogorov-Arnold-
Moser-type theorem exists [6], and with it the associated
barriers to global transport [4]. On the other hand, the
case of two actions, which is also generic for a class of
flows, displays in Liouvillian maps a new phenomenon
of resonance-induced diffusion leading to global trans-
port throughout phase space [4]. However, despite this
theoretical progress, until now no realistic flow —in the
sense of being at least an approximate solution of the
Navier-Stokes equations for a realizable experiment —has
been observed to show the above properties. The pur-
pose of this Letter is to fill the gap for the two-action case
by introducing the first engineerable flow demonstrating
the presence of resonance-induced diffusion in real fluid
flows.

We begin by briefly illustrating the phenomenon for a
map, introducing at the same time the adiabatic invariants

H(Ii, l2) = Fi(I)dI— F2(1)dI = p. (4)

However, this analysis breaks down when the angular
variable does not sample its domain of variation uni-
formly. This failure is bound to occur when the rotation
is resonant; when neo(Ii, I2) = 2vrlc, where Ic and n are
integers. The family of curves in the action plane de-
fined by Eq. (4) is generically transversal to the curves on
which these resonances occur. Although the resonances

and resonant surfaces we encounter in two-action flows.
The map

+ &Fi(12 0) 12 I2 + &F2(II 0)

0' = 0 + to(I,', I')
represents a small perturbation of an integrable Liouvil-
lian map having two action and one angle variables [7]:
For vanishing e, the two action variables I~ and I2 remain
invariant while the angle t9 rotates with a constant angular
frequency that depends only on the actions. When e is
nonzero but small the action variables drift slowly com-
pared to the angle. This separation of scales allows us to
average over 0 leading to an adiabatic description of the
motion. Before the actions change appreciably, the angle
is able to traverse a large sample of its domain. Hence
the evolution of the actions is sensitive only to the av-
erage value of the angle: The action equations can be
averaged over the angle, and so become decoupled from
the angle equation to yield an area-preserving map

Ii = Ii + RF i (I2), I2 = I2 + BF2(Ii), (2)

where the bar represents the 0 average. Being a small
perturbation of the two-dimensional identity, the map of
the action plane can be well approximated by a two-
dimensional autonomous Hamiltonian flow

BH — BH
I2 = F2(li) = — . (3)

BI2 0I)
One is then led to the conclusion that the dynamics of the
map in Eq. (1) occurs on invariant surfaces that are the
product of the almost uniform angular motion of 0, and
the level curves of the Hamiltonian
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are dense in the action plane, they have a hierarchical
structure in which the relative strength of different or-
ders It/n of resonances is governed by the Fourier ex-
pansion of Eq. (1), such that in general the lowest-order
resonances have the smallest denominators n, . Hence one
might expect the adiabatic approximation to provide a
good description of the action motion, except at the in-
tersections with the lowest-order resonances. This is de-
picted in Fig. 1(a) for a particular two-action Liouvillian
map. Close to resonances the trajectory oscillates wildly
between different invariant curves H = P. In Fig. 1(b)
we have plotted the time evolution of the adiabatic invari-
ant 0 for this map to show that it remains nearly constant
almost all the time, but jumps chaotically from one invari-
ant curve to another at each intersection.

The study of two-action properties in a real fluid flow is
made difficult by the fact that very few three-dimensional
time-dependent fluid flows are analytically tractable. In
the following we introduce a fluid flow that can be solved
analytically as a perturbation expansion of the Navier-
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FIG. 1. (a) Projection of a trajectory in a two-action Liou-
villian map onto the plane z = 0. The map is x' = x +
0.001(sinz + 2cosy), y' = y + 0.001(1.5sinx' + 2.5cosz),
z' = z + 4(cosy' + sinx'). The diagonal dashed line shows
the location of the lowest-order 0/1 resonance. (h) The
time evolution of the corresponding adiabatic invariant H =
2 sin p + 1.5 cos x.
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Stokes equations and that exhibits the phenomenon just
illustrated. The flow we have chosen to consider is
incompressible flow at low Reynolds numbers between
two concentric spheres which rotate with different angular
velocities about a common axis that switches in turn
between two different directions separated by an angle
a. In the absence of time dependence introduced by the
axis switching, the flow consists of a primary spherical
Couette flow about the rotation axis, superposed with an
orthogonal secondary flow in the meridian plane (r, 0) [8].
Owing to axial symmetry, none of the flow components
depends on the azimuthal coordinate @. The secondary
flow, which is made up of one or two Taylor vortices in
each hemisphere, depending on the flow parameters [9], is
then two dimensional and described by a stream function
P that can be computed perturbatively in the Reynolds
number Re. The velocity field up to first order in the
Reynolds number reads

1 t)P . 1
V~ =r, vg=—

r2sinO BO

a2i
vy = air + —sinO = r sinO

I 2)
where P is given by

P = Re —+ A2 + A3r + A4r
Ai 3 5

r 2

r sinO 3r
= rO,

a2 az
+ ———air

~
sin Ocos0, (6)4 r )

and ai, a2, Ai, A2, A3, A4 are constants dependent on the
ratios of the radii and the angular velocities of the spheres
[9]. Notice that for Re « 1 the secondary flow (v, , vg)
is very much slower than the primary flow v&.

The perturbation of this flow by periodic axis switching
introduces time dependence at the same time as true
three dimensionality by coupling together the velocity
components of Eq. (5). Since Re « 1, we can assume
that fluid inertia is not important, such that trajectories
of passive scalars will be a piecewise juxtaposition of
the steady flow about each axis. Notice that the r and
O coordinates are always coupled by the secondary flow
except when the Reynolds number is precisely zero.
Furthermore, adding a second rotation axis leaves the
equation describing the evolution of r unchanged, but
introduces a coupling between 0 and @ which is of O(n)
for small axis separation u. All this implies that, although
we do not have direct access to the three-dimensional
integrable case, we can, however, intuit that it should
exist close by the case we are considering for sufficiently
small perturbations. We can construct a reference frame
(r, 0, @) tilted midway between the two axes [9], with
the rationale that each semiperiod has its own adiabatic
invariant, Eq. (6), tilted with respect to the other, and
we expect that the composed trajectory will on average
lie on the adiabatic invariant midway between the two.
We can show that this will be the case in the limit
when the axis separation and the Reynolds number are
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sufficiently small. The change in r and 0 over a period
is bounded by a quantity of O(n), while P changes by
an arbitrary amount over the same period. Thus for small
axis separation n and low Reynolds numbers, r and 0
are action variables, and P is an angle. Having this
set of approximate action-angle variables, we are able to
calculate the invariant surfaces and the resonant surfaces
associated with a nonintegrable perturbation of a two-
action How.

Although we are not able to obtain an exact expression
for the adiabatic invariant of the stroboscopic map for all
n, we can obtain perturbatively in u an expression

Z 0-

—a12r sin 0cos02 2

Re A11 3 5
2

+ A21 + A31r + A41r
2 r

+21 +21+ —at 1 r41, r )
A12 3 5+ + A22+ A32r + A4, r
r

+ a22 a22

4 r
(7)

FIG. 2. Level curves of the adiabatic invariant surfaces (thin
lines) are shown inside the two spheres (thick lines) together
with the lowest-order resonant surfaces intersecting them
(thin dashed lines) on the plane y = r sin 0 sin @ = 0 for a
particular set of parameter values for small axis separation.
The resonance shown are, from the inner sphere to the outer,
k/n = —2/1, —3/2, —1/1, —1/2, 0/1, and 1/2.

valid for small axis separations, where a;~ and A;~ rep-
resent the constants a; and A; evaluated for the two
semiperiods j = 1, 2. We can similarly obtain the reso-
nant surfaces: In the tilted coordinate system (r, O, @),
@ correspondingly strobed is the fast angular variable.
The resonant rotation of P, as in Liouvillian maps, oc-
curs when AP = 2vrk/n, where k and n are integers.
For small axis separations, this is true when

2~k 1 ( a21 a22= —
l ~11+ + ~12 + T, (g)

n 2 4 r 3 r 3

where T is the axis-switching period. Notice that these
resonant surfaces are independent of 0, i.e., are spherical
shells of varying radii r~y„, up to first order in the
axis separation. In Fig. 2 we show the locations in the
meridian plane of both the adiabatic invariant and the
resonances for a particular value of the parameters.

Numerically computed strobed trajectories show that
the theoretical picture we painted above is accurate and
that the phenomenon of resonance-induced diffusion, pre-
viously reported only for Liouvillian maps, is present here
with striking resemblance in a real fiuid How. To illus-
trate this, we choose the Bow parameters such that the
relative geometry of the adiabatic invariants and the res-
onances match that of Fig. 1(a) above: The lowest-order
resonance in Fig. 2 passes near the middle of the family
of adiabatic invariants. In Fig. 3(a) we show a projec-
tion on the meridian plane of the stroboscopically sam-
pled trajectory of the flow at these parameter values. The
similarity between Fig. 3(a) and Fig. 1(a) is immediately
obvious. Furthermore, in Fig. 3(b), we show the strobed
time evolution of the invariant given by Eq. (7). Again its
likeness to Fig. 1(b) is undeniable, which highlights both
the presence of resonance-induced diffusion here, and the
accuracy of our assumption about the adiabatic invariant.
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FIG. 3. (a) The projection of a strobed trajectory onto the
plane y = r sin0 sin@ = 0. The parameter values were cho-
sen to be the same as in Fig. 2, such that the lowest-order 0/1
resonance (dashed) is in the middle of the region between the
spheres, while leaving other primary resonances distant. The
axis separation angle is n = 0.1 and the Reynolds number
Re = 0.1. (b) Time evolution of the adiabatic invariant H for
this case.
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FIG. 4. A slice of a strobed trajectory between —0.01 ~ y (
0.01 for the same parameter values as Fig. 3. Locations of
low-order resonances are shown as in Fig. 2. 40000 points
(corresponding to many times this number of periods) are
plotted here, all from the same initial condition.

Finally, as the slice of a strobed trajectory in Fig. 4
attests, the mechanism of resonance-induced diffusion is
responsible for the existence of asymptotically, globally,
space-filling trajectories. This slice illustrates how effec-
tive resonance-induced diffusion is at mixing; the pertur-
bation, which is of O(cr), is very small here, yet the only
regions where the trajectory has not yet ventured are close
to the poles, and the middle of the vortices, which lie inside
the 0/I resonance shell. In time, the trajectory will diffuse
into these regions too, through the action of the higher-
order resonances that are dense throughout the space. In-
creasing the axis separation n increases the amount of time
the trajectory is captured into resonance, and with it the
size of the jumps and the diffusion rate. Other quantities
relevant to mixing the stretching and folding measured
by the Lyapunov exponents of the How —also increase as
powers of n. Experimental control of the mixing rate can
then be achieved through adjustment of the strength and
density of the resonances with the axis separation n, the
angular velocity ratio of the spheres, and the period of the
motion [9]. Further quantitative studies of mixing effi-
ciency, as well as the effects of the interplay of space-filling
trajectories and molecular diffusion on mixing and trans-
port, are now in progress.

In summary, we have shown that the properties of
nearly integrable two-action Liouvillian maps are highly
relevant to the transport features of a large class of real
quid flows. We expect to see in the stroboscopic maps of
such Aows the resonance-induced diffusion characteristic
of two-action maps, consisting of motion on invariant
surfaces interspersed with periods of motion on resonant
surfaces. We have also shown that our action-angle

classification of Liouvillian maps has good predictive
capability. This finding opens up an avenue for the
experimental verification of the existence of space-filling
trajectories in this and other similar How geometries in
the presence of small periodic modulations. There are
many technological implications of this novel diffusion
phenomenon, and we aim to have excited the reader
about the new possibilities for enhanced mixing that may
arise.
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