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Semiclassical Description of Tunneling in Mixed Systems: Case of the Annular Billiard
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We study quantum-mechanical tunneling between symmetry-related pairs of regular phase space
regions that are separated by a chaotic layer. We consider the annular billiard, and use scattering
theory to relate the splitting of quasidegenerate states quantized on the two regular regions to specific
paths connecting them. The tunneling amplitudes involved are given a semiclassical interpretation by
extending the billiard boundaries to complex space and generalizing specular reAection to complex rays.
We give analytical expressions for the splittings, and show that the dominant contributions come from
chaos-assisted paths that tunnel into and out of the chaotic layer.
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Recently there has been a surge of interest in quantum
systems whose classical counterparts exhibit a mixture
of regular and chaotic motion. Such systems are of
great importance since they comprise the majority of
dynamical systems found in nature. One interesting
feature is quantum-mechanical tunneling between regular
regions in phase space that are separated by a chaotic
layer. Numerical studies of mixed systems have shown
that the splitting of quasidoublets associated with such
pairs of regular regions was much higher than could be
explained by direct tunneling processes [1—3]. This was
attributed in [2,3] to a suggested mechanism of chaos
assisted tunneling, i.e., tunneling from one regular region
into the chaotic sea, propagating "classically" to the other
side, and tunneling out into the second regular region.
Since a large part of the phase space is thus traversed via
classically allowed transitions, these paths were expected
to considerably enhance the splitting.

In this work we study tunneling from a scattering the-
ory point of view, taking as a specific example the annular
billiard proposed in [3]. This allows us to write the split-
tings as a sum over paths in angular momentum space,
which can include both classically allowed and tunneling
transitions. The tunneling amplitudes are evaluated semi-
classically by continuing the billiard boundaries to com-
plex configuration space, and generalizing the mechanism
of specular reflection to the case of complex rays. We
obtain analytical expressions for the splittings in terms of
these transition amplitudes, and show that the dominant
contributions arise from paths that tunnel into (and out
of) the chaotic layer via intermediate angular momenta,
which lie on the boundary between the regular and chaotic
regions. This approach yields values for the splitting that
are in good agreement with exact results.

The annular billiard consists of the space between two
nonconcentric circles of radius R and a ( R, centered
at (x, y) coordinates 0 —= (0, 0) and 0' = (6, 0), respec-
tively. Classically, a particle moves freely between spec-
ular rejections on the bounding circles. We parametrize
trajectories by their impact parameter L with respect to

0 and their direction of propagation y. Trajectories of
~L~ ~ a + 6 do not hit the inner circle, but rotate for-
ever at constant L, while the phase space for ~L~ ~ a + 6
consists of a mixture of regular islands and chaotic layers.
Phase space plots can be found in Ref. [3]. In this Letter
we use parameters for which a single chaotic layer ex-
tendsfromL = a + BtoL = —(a + 6).

We apply the scattering approach to quantization first
proposed in [4]. Let us write the wave function in terms
of incoming and outgoing cylindrical waves,

P(r, @) = g fn, H„(kr) + P„H„(kr)]e' ~,

oo H"' k
S.~'~ = — g J„&(ka)J &(kb)

Ht (ka)
(2)

where Hn
'

(x) denotes the Hankel functions of the first
(1,2)

and second kinds, and k is the wave number. We consider
the billiard as two back-to-back scattering systems; the
first, "inner" system consists of incoming waves being
reAected to outgoing waves by the exterior of the inner
circle, whereas the "outer" system consists of outgoing
waves being scattered to incoming waves by the interior
of the outer circle. The two systems are characterized
by scattering matrices 5 ol(k), respectively, that relate
the coefficient vectors n, P by P = St 1(k) n and u =
Stol(k) P. Requiring the two relations to be consistent
results in the quantization condition

det[5(k) —I] = 0, 5(k) = 5 (k)5 (k) . (1)
Thus the billiard supports an eigenvalue whenever one of
the eigenphases of 5(k) equals an integer multiple of 27r

We drop the wave number argument in the sequel. S(+)

is clearly just the diagonal matrix Snm = Hn (kR)/—(o) (1)

HP (kR)6„, while Sttl can be obtained by writing it
( (I) (2) (1)

as Snm = Hn (ka)/Hn —(ka) Bnm in the primed coor-
dinates, and then performing a coordinate change. Using
the addition theorem for Bessel functions (see, e.g. , [5])
this gives
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The structure of 5 can be seen in Fig. 1, which shows
!S„!for k = 100, a = 0.4, and 6 = 0.2. The inset
gives an overview of one quadrant. One can see that 5
is almost diagonal at angular momenta n, m ) k(a + 6).
For n, m below this value most of the amplitude lies
within the region of classically allowed transitions and is
delimited by caustics due to classical rainbow scattering.
Closer inspection reveals that these ridges extend into the
classically forbidden region as well, although they are
exponentially suppressed there. The main figure shows
a single row n = 70. Since n ) k(a + 6), the diagonal
element is almost unimodular, while the nondiagonal
elements are exponentially small. One finds a maximum
at m = 63 that corresponds to the ridge seen in the inset,
while away from this maximum the matrix elements decay
faster than exponentially.

For our purpose it will prove sufficient to approximate

the magnitudes !5„!= !Snml. We will now sketch this
(I)

semiclassical derivation; a more detailed account will
be given elsewhere [6]. Starting from (2), we write
J r(kB) = e' ( )Jr (k6) and apply the Poisson
summation formula to get
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FIG. 1. Tunneling amplitudes !S„~! for n = 70, a = 0.4,
6 = 0.2, and k = 100 as a function of m, calculated exactly
(dots) and semiclassically (full line). The inset shows one
quadrant of !5!,with larger values corresponding to larger dots,
in arbitrary units. Off-diagonal ridges at n, m ) k(a + 6) are
exponentially enhanced in the plot. The dashed lines indicate
k(a + 6).

g (I)
nm

r n i2~pS+im(m —8)dce

XJ„r(k6)Jr (k6) (t)
H, (ka)

(3)

J„(p) = (I/2m) dy exp! ig cos y + iv(y —vr/2)],

and consider only the p, = 0 term (see below). We replace
the Bessel functions by their Sommerfeld representation

where the contour of integration C runs from —~ + i~
to ~ + i~. The contribution of the Hankel functions to
nondiagonal elements of 5() is asymptotically given by
their Debye approximation [7] to be i exp! i 2ka(sin Q-
Q cos Q)], where Q = arccos(4/ka). Snm can then be(I)

written in the form of an integral over an exponential
whose argument is proportional to k. In the semiclassical
limit k » 1 this integration can be carried out using the

!

sadd1e point approximation, giving

g (I) l~, l i k 4'~ + (i j2) arg R„—i 3~/4
nm

4„= B(cos yf „—cosy; ~) ——
I yf „+—

! + — y; „+—
! + 2a sin

1 r7 ~C& rl 24 r4l
2

2~ ~Pf ~Pi Q'y

2 ——1

(4)

(5b)

n = —k6 sin y; „+ka cos Q„. (5c)
Solving (5) yields a number of saddle points in the complex
p1ane. For most values of n, m the dominant contribution
comes from a single saddle, whereas others are either neg-
ligible or cannot be reached by deformation of the contour
of integration. This dominant saddle coalesces with its
symmetry-related counterpart at values of n, m, which lie

where the summation is over saddles p in the complex close to the ridges seen in the inset of Fig. 1. (The actual

Q, yi r yf space. These saddles are determined by ridges correspond to points where yf ~ becomes real and

o =yf, ~
—y, ~ + 2Q~ ~

equal to vr/2 or 37r/2. ) In principle, near this caustic
saddle point integration should be replaced by a uniform

m n —k6 =(sin yf ~
—sin y; „), approximation, and also the Hankel functions should be

treated more carefully. However, a detailed treatment of
this region is not required for the purpose of this paper.
The fu11 line in Fig. 1 shows the contribution of the domi-

nant saddle to lSnm l, and one can see that there is excellent(I)

agreement over a wide range of angular momenta.
For completeness, let us consider the p, 4 0 terms

in (3). Each integral in the summation can be written

as a residue sum over the poles of Hr (ka)/H~ (ka).(2) (~)
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These residue contributions are interpreted in standard
diffraction theory as surface waves excited on the inner
disk by rays of grazing incidence [8]. As can be seen
from Fig. 1, at our parameter values they give rise to
significant corrections only over a small range of m. As
the corresponding transitions will turn out to be of no
interest in the present context, we defer a discussion of
the residue terms to [6].

The approximation given in Eqs. (4) and (5) can be
interpreted in terms of classical trajectories in complex
configuration space, by extending the dynamics inside
the billiard to complex coordinates. The extension of
free fIight to complex coordinates is trivial. In order to
describe the interaction with the inner circle, we define a
complex circle of radius a around the point (xo, yo) as the
surface for which x —xo = a cos P, y

—
yo = a sin P,

where P is allowed to be complex. Our motivation is
that a wave function satisfying Dirichlet or Neumann
boundary conditions on such a circle for real P will also
satisfy them for complex p. Next, we note that through
(almost) every point on a circle one can pass two distinct
trajectories with a given impact parameter relative to its
center. Since reflection from a circle centered at the
origin preserves the impact parameter, we define specular
reAection as the mapping from one of these trajectories to
the other.

It is easy to verify that any given initial and final impact
parameters are linked by at least one complex trajectory.
The conditions specifying the corresponding initial and
final angles are then equivalent to Eqs. (5). Thus y;„
and yy ~ have the meaning of the initial and final angles
for which an incoming trajectory with impact parameter
L, = n/k is refiected off the complex inner circle to
the impact parameter LI = m/k. Moreover, (5a) is the
generalized specular refiection condition, while (5b) and
(5c) give the classical defiection function. Note that the
impact parameter with respect to the center of the inner
circle is given by L' = acos Q. By (5c), we see that
L' can become complex even if L; and Ly are real.
Furthermore, unlike in [9], both the initial and final angles
are generically complex.

Finally, it is straightforward to show that the phase 4 in

(4) is given by the reduced action (not the length) of the

ray, 4 = —f,"dt [r(t)p„(t) + p(t)L(t)], where (r, p),
(p„,L) are canonically conjugate polar coordinates and
momenta, and that ~R.„~ is the corresponding reciprocal
stability ~B 4/BL;BLt ~/2~. We therefore find that (4)
coincides with the sum over classical trajectories, which
constitutes the usual semiclassical approximation to scat-
tering matrix elements (see [10]).

We will now extract the level splitting. We first
examine the splittings in eigenphases, and will regard
energy splittings later. Let

~

~ ) represent the doublet of
eigenvectors peaked at angular momenta ~n,

) = ([ n) )
—n)) + g~ —

~ m),
1

2

where the K
— are exponentially small. We denote the

corresponding eigenphases by 0„—and their splitting by
Bg„= (0„+ —g„~. Using exp(iNO„—) = ( ~ [S [

~ ) we
get

which describes the tunneling oscillations between n and

n,—with a correction term Cn ~ k max ~l~
—

~
. For(N) + 2

Cn « N Bg„« 1, we can therefore write(N)

N —
1

(6)

Equation (6) relates the splitting to a sum over all paths

(A;), =~ in matrix element space that go from A~ = n-
to AN = n. The simplest such paths involve only the
direct tunneling amplitude S „,which from Fig. 1 is
exceedingly small. A much larger contribution comes
from paths that tunnel only over small distances in angular
momentum space and traverse the remaining distance
via classically allowed transitions. These are the chaos-
assisted tunneling paths proposed in [2]. In order to deal
with such contributions, we first need to consider the
structure of the chaotic part of phase space.

The quantum evolution of systems with purely chaotic
classical counterparts is usually very well described by
random matrix theory [11]. However, this is only appro-
priate when phase space can be assumed to be completely
structureless. In the case of a classically mixed system,
this is an oversimplification: As the Lyapunov exponent
vanishes smoothly at the interface between chaotic and
regular phase space regions, there is always an interme-
diate layer in which chaotic, but relatively stable, motion
gives rise to classical staying times much longer than the
mean level density. Moreover, angular momentum re-
rnains a preferred basis well into the chaotic part of phase
space. This corresponds to the observation made in [2, 12]
that classical regular structure can be quantum mechani-
cally continued into the chaotic sea. Consequently, it is
only the internal part ~l~ ~ lcQF of the chaotic sea that
is appropriately modeled by a random matrix ensemble,
which in the present case is a circular orthogonal ensem-
ble (COE) of size —2lcoF.

It turns out that there are two types of chaos-assisted
paths that contribute dominantly to the splitting: (I)
paths (n, y, n) that tu—nnel from n directly into the
chaotic region, propagate in some eigenstate

~ y) of the
internal block, and finally tunnel to n, and (II) p—aths
(n, l, y, —l, n) that pro—pagate from n to

~ y ) and then to
—n in two jumps via intermediate edge angular momenta
l and —I, respectively. We will first consider paths
of type (I). Let us denote the eigenphase of

~ y) by
Oz, and let 0, = —i lnS„. Summing over the possible
dwell times at n and y gives contributions of the type
S„~S~ „/sin[(0~ —0, )/2] to the splitting. Assuming
that the S, ~ are distributed independently of the 0~, we
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FIG. 2. Median eigenphase splittings 60„obtained by diag-
onalization of S (full circles), using Eq. (6) with N = 2'3

(empty circles), and as estimated from Eqs. (7) and (8) (dashed
line) with c = 0.1 (see text). Inset: Bk„/60„(diamonds) and
~
B0t l/Bk

~

' (dashed line) evaluated around k = 100.

can average over the COE and calculate the median of the
type (I) splitting contributions [13]

() 5, 5 8
60

sin[(0~ —0„)/2]
where v„= (P~ IS„~~ ), which we approximate by

v„= gg'=" t„, ~ S„gI . Similarly, the type (II) contribu-
tions can be estimated by

(7)

60„ltt)
I Sn, l S—t, —n Sl,y Sy, —l

4
t

sin [(0t —0„)/2] sin[(0~ —0„)/2]

/S
sin [(0t —0„)/2] )

2 f
(8)

Note that 60„will fluctuate strongly about the median
values due to avoided crossings [2,3,14]. The relative im-

(1,11) .
portance of the contributions 60n is system specific;

(11) (1)for the present system we find 60n /60n —25. Fur-
thermore, paths that include additional transitions outside
the chaotic block give negligible contributions.

It remains to connect eigenphase and eigenvalue split-
tings. From (7) and (8) we see that 60„(k) is approxi-
mately constant over exponentially small ranges of k. It is

then simple to show that Bk„=
~

80n /cjk
~

60„where(o)

(o) .
0n is evaluated at 6 = 0. However, we expect Eqs. (7)
and (8) to overestimate the actual splittings: our model ne-
glects residual transport barriers inside the chaotic block,
and the damping effect of imaginary parts of eigenphases
is not accounted for. As these errors are expected to be
independent of n, we can correct by an overall factor c
that we extract from the numerical data.

In Fig. 2 we present a numerical test of our results.
We plot median values of 60„ that were obtained by
varying the outer radius R over 30 values between 1 and
1.3. Note that changing R leaves transition probabilities
constant. The full circles represent the exact 60„as a
function of n Sp. littings smaller than —10 ' (denoted
by empty circles) could not be calculated directly due to
the finite precision of the diagonalization procedure, but
were obtained by calculating S for large N and applying
Eq. (6). Finally, the dashed line shows the prediction
of Eqs. (7) and (8) for lcoE = 50 and c = 0.1. While
the n dependence due to tunneling is reproduced very
well, the coefficient due to transport across the chaotic
sea could only be calculated up to an order of magnitude.
The inset shows Bk„/60„evaluated from the quantization
condition (1) around k = 100 for R = 1, compared to

~
cj0n /i)k I . We see that the correspondence is good.
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Note added. —After submission of this Letter we re-
ceived a preprint [15] that deals with related topics.
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