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It is pointed out that the generalized statistical mechanics introduced by Tsallis [J. Stat. Phys. 52, 479
(1988)] provides a natural frame for developing a thermodynamical formalism of anomalous diffusion.
Within such a frame, we calculate the mean square displacement as a function of time and generalize
the Einstein relation of diffusivity and temperature for random walks of the Lévy-flight type.
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In recent years, much attention has been paid to physical
systems driven by transport mechanisms other than ordi-
nary diffusion. In particular, anomalous diffusion has been
shown to play a fundamental role in the dynamics of a wide
class of systems [1]. Turbulent flows [2], phase-space mo-
tion in chaotic dynamics [3], and transport in highly het-
erogeneous media, such as porous materials or gels [1,4],
are some of the main instances where anomalous diffusion
underlies transport processes.

Ordinary diffusion is characterized by a mean square
displacement proportional to the time, (x2) « ¢, whereas
anomalous diffusion can exhibit a variety of alternative
behaviors. Depending on the physical system under
study, they can range from generalized diffusion laws,
(x?) = t* (a # 1), to situations in which (x?) is not a
well defined quantity. These anomalies are related with
the appearance of unusual topological features, such as
fractal structure [2,5].

Two somewhat different approaches can be used to
model anomalous diffusion by means of random walks.
The first one, in the frame of the continuous time formu-
lation of random walks, makes use of long tailed waiting-
time distributions [4,6]. The other approach considers
long tailed distributions for the jump length probability
and discrete time steps [7]. Both approaches can be com-
bined to account for complex scaling laws, as in turbu-
lence problems [2]. Discrete time random walks with
long tailed jump distributions are paradigmatically repre-
sented by Lévy flights [1-6,8].

Lévy flights are defined by a jump probability p(x)
whose Fourier transform reads p(k) = exp(—ak?), with
k = |k| and ¥y < 2. For y = 2, an ordinary diffusive
random walk—with a well defined mean square displace-
ment—is recovered. Since it is not possible to find an
analytical closed form for the corresponding p(x), it is
usually replaced by a function with the same asymptotic
properties which, ultimately, determine the global features
of the process. A possible alternative form for the jump
probability is

p(x) = No(xj + x7)~ /2, (1)
where x = |x|, d is the spatial dimension, and N, is a
proper normalization constant. The distance xo measures
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the length scale above which the fractal features—
exhibited by Lévy flights at all scales—appear for the
alternative form (1).

We associate now the random walk defined by Eq. (1)
with the transport mechanism of a set of independent par-
ticles in a background at a well defined temperature 7T,
and try to describe this system in the frame of equilib-
rium statistical thermodynamics, as is usually done with
ordinary diffusion [9]. In generic diffusion problems—as
seen from the thermodynamical viewpoint—the possibil-
ity of exploiting the ergodic hypothesis to replace the en-
semble by temporal averages requires one to assume that
the mean time between collisions of the diffusing parti-
cles with the background is finite. Here, we suppose that
the time between collisions is a constant 7, but remark
that the extension of our formulation to the case of a well
defined mean time should be straightforward. Certainly,
this is not the case for the so-called Lévy walks [2,4]—or
any other representation of anomalous diffusion in terms
of waiting-time distributions with divergent first-order
moment—which would require a much more complex
mathematical treatment.

Supposing that during the time between collisions the
velocity v of each particle is essentially constant, a jump
of length x is performed with velocity v = x/7 and,
therefore, with energy € = mv?/2, with m the particle
mass. This connection between the jump length and the
energy makes it possible to obtain, from Eq. (1), the
probability distribution of € along the trajectory of a
single particle. By virtue of the ergodic hypothesis, this
distribution can then be associated with the equilibrium
probability p(e) of a one-particle state of energy €. Taking
into account that g(e)p(e)de = p(x)dx, where g(e) is
the free-particle density of states in d dimensions, we
obtain

) —(d+vy)/2
> , 2)

ple) = N€<1 + 2—2 €

mxg
where N, is a normalization constant. It is apparent that
this form of p(e) does not correspond to the exponential
energy distribution obtained from Boltzmann-Gibbs statis-
tics. Instead, it coincides in form with the energy distribu-
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tion derived in the frame of a generalization of statistical
thermodynamics recently proposed by Tsallis [10].

Tsallis’ generalized statistical mechanics (TGSM) is
based on an alternative definition for the equilibrium
entropy of a system whose ith microscopic state has
probability p;. It reads

-2, P?
qg — 1
where k is a positive constant and the index g defines
a particular statistics. In the limit ¢ — 1—and for k =
kg, the Boltzmann constant—the usual Boltzmann-Gibbs
formulation is reobtained. To find the probability p; as a
function of the energy €; of the ith state, the entropy S,
is maximized with respect to p;, taking into account the
constraint of probability normalization, > ; p; = 1, and a

generalized constraint

S, =k , 3)

Zp?ei = E, = const, 4)
i

which defines the generalized mean energy E,. Under
such constraints, the maximization of the generalized
entropy S, produces

pi = ple) = All + Blg — De; 7V (5)

where the constants A and B play the role of Lagrange
multipliers, respectively, associated with the partition
function and the temperature [10].

Probably, the main difference between TGSM and the
Boltzmann-Gibbs formulation lies in the fact that §,
is a nonadditive quantity. This suggests a connection
between TGSM and nonextensive physics [11]. In fact,
a major success of this generalization has been to give a
solution for the divergent mass of the polytropic model
of gravitational systems [12]. Suitable generalizations
of the Ehrefest theorem and Jaynes duality relations
[13], von Neumann equation [14], fluctuation-dissipation
theorem [15], Bogolyubov inequality [16], Langevin and
Fokker-Planck equations [17], and Callen identity [18] are
consistent with TGSM, which also exhibits a Legendre-
transformation structure [10] and can be extended to treat
quantum problems [19]. A connection between TGSM
and fractals, through the maximum-entropy formalism for
random walks, has been found for the first time in [5].

Now, from the comparison of Egs. (2) and (5), it
clearly results that TGSM provides a natural frame for a
thermodynamical treatment of anomalous diffusion. For
a given value of the Lévy exponent 7y the proper statistics
correspond to the index

2
d+ vy’

g=1+ (6)
Note that g > 1. In fact, according to Eq. (5), a statis-
tics index lower than unity would imply—in the present
framework—an unphysical energy distribution. More-

over, in our particular picture of the diffusion process, it
is possible to identify the temperature parameter as

272
B= 1
(g — Dmxq

We observe that in the context of TGSM the one-
step mean square displacement of a Lévy flight, which—
according to Eq. (4)—should be defined as

(%), = f x*p(x)? dx, 8)

is finite [5]. In fact, according to Eq. (6), x>x¢ "1 p(x)9 ~
x2td=1y=2=d=y _ x=(+y) < x=1 for large x. On the
other hand, usual statistics produces a divergent mean
square displacement for Lévy flights.

This observation implies that, in constrast with usual
statistics, TGSM makes it possible to compute the mean
square displacement of an n-step Lévy flight, (x2),, and to
relate it with the time elapsed during the flight, as usually
done with ordinary diffusion. This mean value should be
given by

)

2y, = f ¥ pa(x)7 dx ©)

where p,(x) is the probability density of finding the
walker at point x after the n-step flight. This probability
density is easily defined in the Fourier representation as
pn(k) = p(k)", where p(k) is the Fourier transform of
p(x).

Since for k — O the Fourier transform of Eq. (1)
behaves as p(k) = 1 — ak” with yo = min(vy,2) [6,20]
and a constant, its nth power satisfies

p"(k) = 1 — ank” = p(n'/"k), (10)

where the scaling function p(k) is expected to have the
same asymptotic properties as p(k). Antitransforming
this scaled form of p,(k) we obtain, for large x,

pa(x) = 0=V 0x) . an
Taking into account Eq. (9), this implies
(qu ~ n[2—(q—1)d]/70<}'2>q , (12)

where (x?), is the mean square displacement associated
with the scaling function p(x). This approximate equa-
tion should become an identity for long times, when only
the asymptotic properties of the distributions are relevant.

Now, assuming that p(x) =~ p(x) for large x, it is eas-
ily shown that (%2),] = K(q,d)x3, where the coefficient
K(q,d) can depend on the index g and the dimension d
but is independent of xo. Moreover, the step number n
can be put in terms of the time ¢ elapsed during the flight
as n = t/7. Introducing these expressions in Eq. (12) we
find that the mean square displacement of the Lévy flight
as a function of time reads

K(q, d)x% (g
2 _ [2—(g—1)al/
<X (t)>q 7-[2'(q*1)d]/*/o t ! ‘yo. (13)
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In order to relate this mean square displacement with
the thermodynamical quantities—in particular, with the
temperature parameter 8-—we replace xo from Eq. (7),
obtaining

(x*(1))g = Dg1, (14)
where the generalized anomalous-diffusion coefficient D,
is given by

2K(q,d) 2 ¢
D, = —i’—l , (15)
q mpB
and
_2=(qg—1d _[qg-1 for y < 2,
@ = Yo 1= (¢q— 1Dd/2 fory > 2.
(16)

In Fig. 1 we show this anomalous-diffusion exponent «
as a function of the statistics index ¢, for one, two, and
three dimensions. We note that this exponent reduces to
the ordinary value « = 1 for ¢ — 1. In fact, y diverges
in this limit, and the second line of Eq. (16) holds. For
other values of g, as shown in Fig. 1, this exponent can
adopt a variety of values, representing both subdiffusive
(a < 1) and superdiffusive (o > 1) regimes. We stress
that for vy < 2—i.e., for sufficiently large values of g—
a does not depend on the spatial dimension, as in the case
of ordinary diffusion.

Equation (14) has the form of a typical relation be-
tween mean square displacement and time for anomalous
diffusion. The coefficient D, is related to the tempera-
ture through Eq. (15), which is nothing but a generalized
form of the Einstein relation [9]. This generalized relation
indicates that—as in ordinary diffusion—the diffusion
coefficient is inversely proportional to the temperature pa-
rameter 8. Recalling that in ordinary diffusion the product
m = BD defines the mobility of the diffusing particles [9],
we can generalize this definition by taking u, & 27 m.
As the ordinary mobility, u, is proportional to a power of
the mean time between collisions and depends inversely
on the particle mass.
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FIG. 1. The anomalous-diffusion exponent a as a function

of the statistics index g, for one-, two-, and three-dimensional
systems.
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These results make evident a strong formal parallelism
between the thermodynamical properties of ordinary dif-
fusion as treated by means of the usual Boltzmann-Gibbs
statistics, and those of anomalous diffusion with respect to
the generalized statistical formulation. Such a parallelism
suggests that TGSM is the natural statistical frame to deal
with that transport process. Extending this conclusion to
the physics of strongly interacting complex systems—
which share with anomalous diffusion some bizarre fea-
tures, such as the development of fractal structures—we
can conjecture that TGSM can play a fundamental role in
the description of a class of physical systems which are
presently attracting increasing attention.
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