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As an alternative mechanism for bound-free electron-positron pair production, the transfer of a
negative-energy electron in the Coulomb field of one of the collision partners to a bound state of the
other is considered, supplementing the usually adopted view that an electron is excited from a negative-
energy state to a bound state of the same atom. Under simplifying assumptions, analytic expressions
for the differential and total cross sections can be derived, which explicitly exhibit the dependencies on
the nuclear charges and show a surprisingly strong increase with the collision energy.
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The production of free electron-positron pairs in rela-
tivistic high-Z ion-atom collisions can be viewed to re-
sult from the collision between photons representing the
transient electromagnetic field of the passing ions. This
process [1] is described by quantum electrodynamics [2]
or, approximately, by the equivalent-photon method [3].
Alternatively, one may regard free pair production as the
excitation of a target electron from a negative to a posi-
tive Coulomb continuum state by the perturbing action of
the passing projectile (or vice versa). This picture also al-
lows for bound-free pair production, in which the electron
is created in a bound state of the projectile [4,5], thus de-
creasing its detectable charge, a process that has recently
been identified experimentally [6,7] and is schematically
illustrated by the mechanism (a) of Fig. 1.

Until now, theoretical treatments, by distorted-wave
perturbation theory as well as by nonperturbative single-
center coupled-channel calculations [8], have exclusively
considered process (a). In the present Letter, we describe
an alternative mechanism (b), in which the electron is
transferred from a negative-energy state of the target to
a bound state of the projectile.

Whereas the Dirac equation for the complete two-center
system has a single continuum in any inertial frame, the
continua of the two subsystems, if described in one of
them, are different. That is, a negative-energy state in
one of the subsystems requires for its representation in the
other subsystem a complete set of eigenstates, including
bound and positive-energy wave functions. In this sense,
it is meaningful to associate different “mechanisms” with
the alternatives (a) and (b). While (a) is a single-center
process like excitation or ionization with the passing ion
merely generating the transient field, process (b) is the
charge transfer from the negative-energy continuum with
both ions acting as carriers of eigenstates. We here
present a first systematic calculation of this alternative
process.

For this purpose, the Born or Oppenheimer-Brinkman-
Kramers (OBK) approximation known from capture
theory [1] should be a reasonable starting point for the
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problem at hand. This approximation (which is postprior
symmetric) yields the correct parametric dependencies
of the cross section although its magnitude is usually
too large. Adopting natural units (A = m = ¢ = 1) and
the impact parameter (b) formulation, we may write the
transition amplitude [9] in the post form as

Asp(b) = iaZTj dt/ dPrrof(rp) e

—1
X = @p(rr) e (1
rr

Here @ = 2 = 1/137.036 is the fine structure constant,
Zy and Zp are the charge numbers of target and projectile,

projectile

target

FIG. 1. Schematic energy diagram illustrating the two mech-
anisms for pair production: (a) excitation type or single-center
process; (b) transfer type or two-center process. In the figure,
the spectrum of the moving projectile in its rest frame is shifted
upwards by the kinetic energy of an electron attached to it.
Conversely, if one is interested in transfer from the projectile to
the target, the target spectrum has to be shifted upwards by the
same amount with respect to the projectile.
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and ry,t and rp, are the space and time coordinates
of the electron in the target and in the projectile frame,
respectively. The initial wave function ¢p denotes a
negative-energy electron in the Coulomb field of the
target nucleus corresponding to positron momentum p and
energy E, > 0, while the final wave function w} with
energy Ey represents a bound electron in the projectile
field, transformed to the target frame by the matrix S~ =
[(y + 1)/2]V2(1 + 6a,), wherey = (1 — v?)71/2 v is
the projectile velocity, 6 = [(y — 1)/(y + 1)]'/2, and
o, is the component of the Dirac matrix in the beam
direction.

By rewriting STl = 872,78 in Eq. (1), and by
performing the space-time integration in the projectile
system, one may reinterpret the amplitude (1) as caused
by the usual Liénard-Wiechert potential S~ 2r7' of the
target moving with respect to the projectile, however,
acting on a negative-energy state not of the projectile as
in Fig. 1(a), but of the target as in Fig. 1(b).

The energy-differential cross section is obtained by
integrating the transition probability over the impact
parameter plane and over the emission angle ), of the
positron and by summing over the spin projections s and
ey in the initial and final states, so that

do _ pEpf / , .
i, " Gy ) 1 2| Eolan®P @

Siphs

By introducing the Fourier transforms gbfff (q) of go}” (r')
and g, (k) of ¢, (r)/r into Eq. (2), expressing the space-
time coordinates of the projectile system by those in the
target system, and by integrating over space and time, we
obtain [1]

2maZ _ust
Arp(b) = I'TTf d’ky @5 (—kp, —k-)

X 87 gy (kp.ky)e™ P, 3)

where the vectors q and k are decomposed into their
transverse components +k; and longitudinal parts —k_
and k4. The latter quantities are given by

k- = (Ep/'y + Ef)/v = (Ep/y + 1)/U»

k+ :(Ep +Ef/7)/vz(Ep + 1/7)/”7 4
connected by the relation

ki — k2 = p* + a?Z73. (5)

It is important to note that in the momentum transfers (4)
for the two-center transition considered here, only one of
the initial and final energies is Lorentz transformed, while
in the minimum momentum transfer go = (E, + E;)/v
known from the excitation-type transition within a single
inertial frame, both energies are treated in the same
way. This replacement has a drastic influence on the y
dependence of the cross section.

In order to study the dominant dependence of the
cross section on Zr,Zp, and vy, it is useful to adopt a
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simplified analytical treatment, while deferring a more
rigorous evaluation to a later publication. We assume
aZr <1 and aZp < 1, knowing from experience that
the approximate applicability often extends beyond this
range of validity.

Considering the most important case of transfer into
the K shell of a bare projectile, we adopt a Darwin
wave function for the bound state in the projectile and a
Sommerfeld-Maue wave function for the continuum state
in the target [1]. Moreover, in the latter case, we disregard
the derivative term, which yields an o Zy correction to the
leading charge dependence and decreases as E;‘. With
these simplifications, the Fourier transforms can be given
in a closed form. The resulting density matrices

Pr@ =Y ot @al (.

1'%
P, (k) = f 0, > 2,0 2 (k) 6)

are diagonal in the momenta, because of the b integration
in Eq. (2), which now can be written as
do (aZy)?

=2
dE, g v2y2

PE, f d’ky Te{S ' PS ™' Pp ).
7

Following the procedure of [1], we may evaluate the
trace occurring in Eq. (7) to obtain the result as a
one-dimensional integral evaluated numerically to derive
the cross sections of Figs. 2 and 3. In order to give
a more explicit form, we make use of the fact that
the integrand of Eq. (7) contains the strongly peaked
momentum distribution of the bound electron state and a
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FIG. 2. Energy-differential cross sections [Eq. (7)] for charge
transfer from the negative-energy continuum of a Cu target into
the 1s,,, state of a S'®* projectile.
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similarly peaked positron density matrix. Therefore some
slowly varying functions can be taken out of the integral,

do :64(7 + 1) 27N

so that the differential cross section in natural units is
obtained in the simple analytical form

p(Ep + 1)

(aZr)*(aZp)’

dE, Sv2y? e mnr —

X {5;- + 87 = 81+ 8Dk- + 5 (1 + 82672 + 8,[6 — (5 + 360k + 15 8K ]

+ 8,[26 -+ 18k + 5ok ]

1 (k2 + a273)5

k2 + p?
k+p

(k2 + a?Z3)? ks — p

k++p

} . (8)

k3 p2

Here v, = (1 — l/Ef,)l/2 is the positron velocity in the l denominator discussed above. This behavior is distinctly

target frame, nr = aZr/v,, p = (E3 — 1)!'/2, and 8, =
[(E, — )/(E, + 1)]V2.  The denominator (k2 +
@2Z3)° has the same structure as in the corresponding
simple formula for charge transfer [10] and is crucial for
the dependence on the Lorentz factor vy, in particular,
when the positron energy E, is large. Then, with in-
creasing vy, the denominator becomes smaller, so that the
decrease as 1/y of the prefactor is more than compen-
sated. The reason is the following: While for transfer
between bound states the overlap in momentum space de-
creases with the collision energy, leading to an asymptotic
1/v dependence, the transfer from a (negative-energy)
continuum state to a bound state is not subject to such a
constraint. As the projectile energy increases, higher and
higher positron momenta in the target will contribute to
the momentum overlap with the bound projectile state.
Figure 2 shows positron spectra calculated from Eq. (7)
for collisions of S'®* ions with copper targets. The results
of Eq. (8) agree with those of Eq. (7) within about 10%.
One observes that for large values of 7y the differential
cross section decreases very slowly as a function of
the positron energy, a fact that can be attributed to the
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FIG. 3. Reduced cross sections O'/Z% as a function of the

collision energy for collisions of La’’" projectiles with Cu, Ag,

and Au targets. Experiment [7]: squares: Cu; triangles: Ag;
circles: Au. Theory [Eq. (7)]: solid line: Cu; long-dashed line:
Ag; short-dashed line: Au.

different from that of the excitation-type mechanism [4,5];
see Fig 1(a).

If we furthermore assume 7y >> 1 and observe that
E, > 1 contributes most, in this case, we can integrate
Eq. (8) from a reasonable value, say, E, = 2 to infinity
to obtain the total cross section

327 aZ
Tappr = S5~ (aZr)(aZp)® m
16 + 2y + %’yz

9
(i + 2/7)7 ®
This is to be compared with the estimate of Bertulani and
Baur [3]
33 aZ

OB = 1—0‘ (aZT)Z(aZP)Sm [ln0.34y - ;]

for the excitation-type pair production based on similar
simplifications.

In Fig. 3, we compare experimental [7] and theoretical
total cross sections for collisions of La’’* projectiles with
Cu, Ag, and Au targets. This comparison merely serves to
show that the process proposed here may compete in mag-
nitude with the process (a) of Fig. 1. However, in contrast
to the experimental data, the theoretical reduced cross sec-
tions O’/Z%‘ decrease with increasing charge number. This
is due to the factor aZr /[expQmaZr) — 1] arising from
the Coulomb repulsion between the positron and the target
nucleus, which decreases the matrix element (1) at small
values of ry. Perturbation theory for the excitation-type
process (a) yields a constant reduced cross section. It is
worth mentioning that calculations for 0.956 GeV/u [11]
using exact bound-state and exact Coulomb-Dirac con-
tinuum wave functions with the dominant partial waves
|| = 2 lead to cross sections that exceed the present es-
timates by about 30% for Zr = 29, by 50% for Zr = 47,
and by a factor of 2.8 for Zy = 79 showing that the ap-
proximation aZr << 1 is no longer valid in the last case.
While in these calculations the Z7 dependence is too weak,
the Zp dependence [11] agrees well with the data [7].

The y dependence of the total cross section is exhibited
in Fig. 4 for S'®* projectiles impinging on Cu, Ag, and
Au targets. Similarly, as in Fig. 3, it is assumed here that
our approximate wave functions still reflect the leading
charge dependence. The solid curves are calculated from
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the simple formula (9), which yields within about 10%
the same results for v = 10 as a numerical evaluation
of Eq. (7) using Darwin or exact bound-state Dirac
wave functions. In contrast, the dashed curve depicts
the behavior of the approximate equation (10); see [3],
which relies on similar assumptions. The logarithmic
v dependence is characteristic for the excitation-type
behavior, found both in ionization [1] and in the single-
center treatment of free or bound-free pair production
[4,5,12]. Of course, unitarity requirements will limit the
steady increase of the cross section with y. Other reaction
channels will open up and take flux out of bound-free pair
production.

The basic view underlying the present approach is
the following: In a rigorous treatment, the negative-
energy continuum is a two-center continuum, which
contains portions that are difficult to represent by the
complete set of single-center eigenstates [13]. Given the
incompleteness, in practice, of a single-center expansion,
the negative-energy continuum of the second center (in
practice also incomplete, so that overcompleteness is
avoided) is needed to supplement an important part of the
basis space. In this way, the description is rendered more
symmetric between the collision partners.

In summary, we propose a novel mechanism for bound-
free pair production, namely, charge transfer from the
negative-energy continuum of the target into a bound state
of the projectile. (A similar mechanism will apply to free
pair production.) This process may become identifiable
in the future if the momentum transfer can be measured
by the use of recoil-ion momentum spectroscopy. While
the mechanism deserves a more detailed investigation, we
show in an initial simplified treatment: (i) For high values
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FIG. 4. Reduced cross sections o /(Z#Z3) for bound-free pair
production by S'®* projectiles as a function of y with target
charges Zy = 29, 47, and 79. Solid lines (not depending
on the projectile charge): present results for charge transfer
from the negative-energy continuum, Eq. (9); dashed line (not
depending on the target charge): excitation-type mechanism,
Eq. (10); see [3].
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of v, the positron spectra extend to very high energies,
which still provide appreciable momentum overlap with
the moving bound-state wave function. (ii) Because of
this, the total cross sections increase much more rapidly
with y than for the usual excitation-type mechanism.
While the detailed behavior and the magnitude of the
total cross sections will certainly be modified in a more
accurate theory, we believe that the main parametric
dependencies will survive.
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with A. Sgrensen and also with D.C. Ionescu. He has
benefited from a stay at the Argental-Klinik in Isny-
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