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Single Atom Quasi-Penning Trap
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The combination of a circularly polarized microwave field and a magnetic field can be used to create
a global equilibrium point—an outer minimum—in the electronic dynamics of Rydberg atoms. Stable
motion can be maintained at this minimum and the Rydberg electron is localized both radially and
angularly while moving on a circular Kepler orbit in a region of space that excludes the nucleus.

PACS numbers: 32.60.+i, 05.45.+b, 31.50.4+w, 32.80.Fb

Earnshaw’s theorem [1] precludes the possibility of
trapping a charged particle in free space solely by using
a combination of static electric fields. The development
of ion and electron traps has, therefore, relied on the
combinations of static electric and radio-frequency fields
(Paul trap [2]) or static electric and magnetic fields
(Penning trap [3]) [4]. Some time ago Clark, Korevaar,
and Littman [5] proposed the possibility of a single
Rydberg atom functioning as a quasi-Penning (QP) trap;
the system suggested was a hydrogen atom subjected
to crossed electric and magnetic fields—the E X B
problem—for which long-living resonances associated
with the Stark saddle point were predicted [5]. However,
the spectral signature expected from the QP orbits has not,
so far, been detected [6,7].

In this Letter we propose an alternative: We show that
by combining a circularly polarized (CP) microwave field
with a homogeneous magnetic field it is possible to con-
fine a Rydberg electron both angularly and radially while
the wave packet moves on circular orbits lying beyond
the Stark saddle point. Technically this corresponds, per-
haps, most closely to an analog of the so-called combined
trap [8]. However, in a frame rotating with the CP field
frequency the system resembles an atom in crossed elec-
tric and magnetic fields and may, therefore, be consid-
ered to constitute a microscopic QP or Rydberg atom trap
(RAT). Although Rydberg atoms in either magnetic [9]
or CP [10] fields have already been well studied theoreti-
cally and experimentally, the effect of the combination of
the two fields has apparently not previously been consid-
ered [11].

In atomic units the Lagrangian for a hydrogen atom
subjected to crossed CP and magnetic fields (denoted
CP X B)in tklle dipzole ap%)roximation is given by
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where the magnetic field is taken to lie along the positive
z direction. In Eq. (1) w, is the cyclotron frequency, wy
is the CP field frequency, and F is the field strength. At
this point it is useful to go to a frame rotating with the CP
frequency which eliminates the explicit time dependence
in Eq. (1), producing the Hamiltonian [12]
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where K is the Jacobi constant. No change of notation
has been made and all coordinates are now assumed to
refer to the rotating frame. The key point is that the
coefficient in the paramagnetic or linear Zeeman (LZ)
term—a Coriolis-like term—in Eq. (2) may be ‘“tuned”
by varying w. and wy. It is interesting to note that a
similar strategy has been employed by Ramsey in his
work on magnetic shielding of nuclei in molecules [13]—
see also [14—17].

The presence of a velocity dependent term makes it
no longer possible to define a potential energy surface.
However, the role of the paramagnetic term may be
uncovered by constructing a zero-velocity surface (ZVS),
or effective potential. The use of zero-velocity surfaces
is widespread in celestial mechanics [18] and has recently
found application in atomic and molecular physics [19—
21]. The effective potential or ZVS for the CP X B
system is given by
x4+ yr+ 22
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Before proceeding it is useful to consider two particular

limits.

V=H-
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(i) In the E X B limit w; = 0, the effective poten-
tial is

V=-1 & px. (4)
r

The ionization threshold is given by the simple Stark
saddle point (SSP) criterion [5,7,22,23], and classically,
ionization is possible—but, unlike in the pure Stark
effect, not inevitable [21]—whenever the energy exceeds
the energy of the saddle point. Note that no outer
equilibrium point can exist in the effective potential [24].
(ii) The pure CP (i.e., w. = 0) problem is more
complicated: The effective potential is given by

1
V= ——

2
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and the electron may escape if its energy lies above
the saddle point in the ZVS, although above threshold,
bound, classical motion is also possible [19]. However,
the ionization mechanism in the CP case is considerably
more intricate than for the E X B problem, involving
destabilization of a maximum in the effective potential
through a Trojan bifurcation [19,25].

The CP X B system differs considerably from these
two limits in that the coefficient of the term in x? + y?
in the ZVS can be arranged to be nonzero and positive.
This occurs whenever w. — wy > 0 provided that wy #
0. For a given w,. this coefficient is maximized when
wf = wc/2,ie., the LZ tern in Eq. (2) is absent, and the
ZVS becomes equivalent to the potential energy surface
(this case is illustrated in Fig. 1). Clearly, the electron
can ionize only along the z direction even though this is
not the electric field direction (in the rotating frame). The
ionization threshold is given by Eion = —F?/2w(w, —
wf), which may lie above or below the saddle point
depending upon the particulars of the fields. In any case,
the combination of a time dependent microwave field and
a magnetic field causes the dynamics to differ greatly from
either the pure Stark effect or the E X B system.

-0.0011
-0.00115 \
-0.0012

K -0.00125

N

-0.0013

-0.00135

-0.0014
-10000 -8000

-6000 -4000

x

FIG. 1. Section through the ZVS (y = 0) with . = 3.72 T,
wy = 52.07 GHz, and F = 2000 V/cm. These parameters
correspond to w;/w. = 1/2. The horizontal line shows the
ionization threshold for the 3D problem—in the planar limit
the system cannot ionize.
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In this Letter we consider only the case w; < w,
because the situations with w; = w. and w; > w. are
essentially equivalent to the E X B and CP problems,
respectively: Both of these systems have already been
studied extensively. We examined the stability of the
critical points of the ZVS and found that a transition
occurs at F. = 3[ws(w, — ws)]”?/J4: For F < F,
the ZVS possesses no real critical points. At F = F, a
real, double critical point is spawned that, with increasing
F, splits into a saddle point and a minimum, as revealed
by a stability analysis of the Hamiltonian flow [19,25].

Figure 1 is a section (y = z = 0) through the ZVS and
shows clearly the existence of both a saddle point and a
minimum in the effective double-well potential together
with the ionization energy for these parameter values. The
equilibrium point is stable and corresponds to a global
minimum—indeed Taylor expansion to second order at
the minimum shows that (a) the motion in the x-y plane
separates from that in the z direction and (b) the electron
may be globally confined in all three degrees of freedom at
this fixed point provided the energy in the rotating frame
lies below the ionization energy. Of course, the depth of
the well and its proximity to the nucleus depend sensitively
on the field strengths. Figure 2 shows the projection onto
the plane of a typical wave function W(x,y) obtained
by numerical diagonalization (using a harmonic oscillator
basis) about the minimum whose principal contribution is
from the separable state with oscillator quantum numbers
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FIG. 2. Level curves of the ZVS for the same parameters
at Fig. 1. Superimposed are contours of the wave function
whose principal component has n, = n, = 2 as obtained by
numerical diagonalization of a high order Taylor expansion at
the minimum. The energy of this state is =~—0.00134 a.u.
(shown by the thick contour), which falls significantly below
the ionization threshold.
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n, = n, = 2. This figure gives an idea of the relative
sizes of the wavelength of the electron and the thickness
of the barrier between the well and the nucleus. Associated
with the equilibrium point is a family of nonstationary,
nondispersive eigenstates, each of which constitutes a
new type of quantum mechanical state. These states
are direct analogs of the Trojan wave packet described
in Ref. [26]: Indeed, a family of such eigenstates will
similarly exist at a stable maximum, thereby generalizing
the concept of a Trojan wave packet [11,26].

The equilibrium point at the minimum in the ZVS
is similar to the Lagrange equilibrium point in the CP
problem [19,26] in that, in the nonrotating frame, it
corresponds to a large, stable, circular orbit. However,
the CP equilibrium is associated with a maximum in the
ZVS of Eq. (5), whereas the equilibrium point lying to
the left of the saddle in Fig. 1 is a true minimum. In
the pure CP case the maximum can be destabilized via a
Trojan bifurcation (induced, e.g., by increasing the field
strength [19]). The absence of confining potential walls
at a maximum means that after the Trojan bifurcation, the
electron can escape from the vicinity of the equilibrium
point [27]; i.e., chaotic trapped motion at the maximum
is not possible [11]. In contrast, at the minimum, the
motion will always be confined within the well provided
(i) the well exists, (ii) the well is deep enough to support
bound states (of course escape through tunneling may
be possible but this will be relatively unimportant for
large n values), and (iii) escape along the z direction is
prevented by choosing an energy below Ej,,. In contrast
to the maximum, chaotic trapped motion at the minimum
is possible and this situation will be discussed more
fully elsewhere. It is reasonable to conclude, therefore,
that associated with the stable minimum in Fig. 1 will
be stable nonspreading localized 3D wave packets that
move along circular orbits well removed from the nucleus.
For parameter values for which the well is close to
being harmonic, these wave packets will approximate
nonspreading, nondispersive coherent states.

In examining the dynamics further it is convenient

to scale coordinates and momenta; r’ = w3/3r, p' =
we 1/Sp. After dropping the primes this yields the Hamil-

tonian
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+ %(}c2 + y2) + ex, (6)
where K = K/wcz/3, Q) = ws/w., and € = F/wﬁ/B.
This scaling shows that the dynamics depends only on
the three parameters K, ), and €. For convenience we
exploit the fact that initial conditions that are confined to
the x-y plane (i.e., z = p, = 0) will remain in that plane

[12], thus allowing the construction of Poincaré surfaces
of section. Figure 3(a) is a typical surface of section
for a value of K midway between the minimum and
the saddle point. The figure clearly shows stable motion
localized in the well in the ZVS. Interestingly, for the
special value of ) = % (i.e., paramagnetic term absent) in
Fig. 3(b), the dynamics in the well is essentially harmonic
and the motion appears to be almost integrable—this is
reasonable given that, at relatively large distances from

FIG. 3. Composite surfaces of section (integrations in regu-
larized parabolic coordinates) and € = 1; (a) ) = 0.75, K =
—2.25; (b) = 0.05, K = —1.95; and (for different initial
conditions) (c) typical trajectory integrated in the nonrotating
frame corresponding to an initial condition started in the ZVS
well with ) = 0.25. In (a) and (b) structure around the origin
has been omitted for clarity.
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the nucleus, the Hamiltonian (6) is almost separable when
Q = % However, calculations of harmonic generation
spectra in Ref. [13] for a similar Hamiltonian point to
the nonseparability of the system since nonseparability is
necessary for high order harmonic generation.

Figure 3(c) shows a typical trapped trajectory in the
nonrotating frame obtained by direct integration of the
Hamiltonian corresponding to Eq. (1), i.e., including mo-
tion in the z direction. It is apparent that stable trapped
motion associated with the well in the two-dimensional
ZVS is possible in the full-dimensional system, and this is
borne out by extensive classical simulations provided that
one works below the ionization threshold exemplified in
Fig. 1. In practice the ionization threshold is quite sensi-
tive to the actual parameters, much more so than the depth
of the well itself, providing the flexibility to adjust the
experimental parameters needed to trap a substantial pop-
ulation in the well. The system thus constitutes a RAT
for the electron. At energies above the saddle point and
for the parameter values in Fig. 3, chaotic motion is pos-
sible, coexisting with regular, localized motion around el-
liptic fixed points originating in the well. Time dependent
quantum simulations are underway to investigate further
the ramifications of our findings. Finally we note that our
results also apply to the problem of an exciton in crossed
fields—in this situation genuinely two-dimensional states
can be prepared by physical confinement to thin layers in
semiconductor materials [16]
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