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Phase Space Entropy and Global Phase Space Structures of (Chaotic) Quantum Systems
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A quantum phase space entropy is defined, which directly rejects the global dynamical properties
of the system similar to the synoptic view of several classical trajectories in a Poincare section. The
quantum results allow a direct comparison with a corresponding purely classical entropy. Numerical
results for a periodically driven rotor illustrate the usefulness of phase space entropies for systems with

mixed chaotic and regular dynamics.

PACS numbers: 03.65.—w, 05.45.+b

It is an ultimate aim in classical dynamics to understand
the global properties of the How in phase space. An
indispensable tool for such an investigation is Poincare s

surface of section, where the time evolution of several
carefully selected trajectories provides a synoptic picture
of the system's dynamics. Here we will concentrate on the
illustrative case of one-dimensional time-periodic systems
(period T) often discussed in studies of the correspondence
between quantum and classical dynamics. A stroboscopic
Poincare map can be obtained by displaying the phase
space points (p, q) at times t = n T (n = 0, 1, 2, . . .).

As an example we study the special case of a harmoni-
cally driven rotor [1,2]

J2
H(t) = —f cos P cos tot

2I
modeling, e.g. , the rotational excitation of a molecule with
a permanent dipole moment by an external force. We use
units where the moment of inertia, I, and the excitation
frequency, ~, are unity. In this case the classical angular
momentum J and the rotor angle cb take the role of the
canonical variables (p, q) used in the general discussion.
The stroboscopic Poincare map is shown in Fig. 1 for a
field strength parameter f = 0.45. Because of symmetry
only the upper half plane is shown. The central stability
island is centered on a 1:1 resonance. It is surrounded

by a chain of five islands centered on a stable period-five
orbit. In addition, there are stable period-one orbits at

(J, @) = (0, 0) and (0, 7r). These islands are embedded
in a chaotic region, which is sharply separated from the
outer regular region.

A Poincare map provides an accurate, however, quali-
tative picture of the dynamics. A more quantitative
approach can be based on the entropy of the (coarse
grained) classical phase space density. The phase space is
partitioned into i = 1, . . . , M disjoint elements of area A.
Starting a trajectory at (p, q) we can compute the proba-
bility P;(p, q) of finding the particle at partition i from
the long-time average of the number of times partition i
has been visited [3]. The Shannon entropy of the resulting
density is 5,(p, q) = —g, t P;(p, q) ln P;(p, q).

Here we use a more sophisticated coarse graining based
on a Gaussian smoothing of the classical phase space den-

5,(p, q) =— Q.(p, q, p, q)»Q. (p, q, p, q) dr

measures the degree of phase space organization at (p, q):
points in the regular region are expected to have low val-
ues of the entropy; points in the chaotic region are char-
acterized by high values. This has been demonstrated for
systems relevant in astrophysics [3] and also for a time-
periodic anharmonic oscillator [4]. Moreover, this entropy
is a dynamical invariant: all points belonging to the same
minimal invariant set have the same entropy. On an invari-
ant curve, the value of the entropy is roughly determined
by the logarithm of the length I. of the invariant curve:
5, —In(1./~A). Invariant curves will hence appear as
contour lines 5,(p, q) = const. All points in a connected

FIG. 1. Classical stroboscopic Poincare section for a driven
rotor with f = 0.45. The lower half plane is omitted because
of symmetry.

sity [4], resulting in a density distribution g, (p', q', p, q)
in (p', q') phase space, depending on the center (p, q) of an
initial Gaussian distribution -exp( —(p' —p)z/2A p2-
(q' —q)z/2hq ). The relative widths of both Gaussians,
the initial and the smoothing distribution, can be controlled
by means of the squeezing parameter s = Ap/Aq. The
distributions are normalized as f g, (p', q', p, q) dy' = 1,
where dy' = dp'dq'/5 with 5 = 4~6,p/t. q is a dimen-
sionless measure, i.e., the Gaussians cover a phase space
area A. The entropy
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chaotic region will have a (high) entropy given by the
phase space area A of the chaotic region S, = In(A/5). In
particular, this implies that the entropy shows a different
scaling behavior with 5 in the chaotic and regular regions.

Here it will be demonstrated that an entropy can be
constructed in a similar manner for quantum dynamics,
which is ideally suited to elucidate the global features
of the quantum system and to investigate the classical-
quantum correspondence. We base our treatment on the
Husimi phase space density (see [4—7] for recent related
applications to chaotic systems)

e (p', q" t) = l&p', q'I+(t)&I', (3)

which is the overlap of the wave function l'If(t)) with a
minimum uncertainty (Apb, q = h /2) wave packet (also
denoted as a coherent state)

(s ~)4 ( s(x —q) i
&xlp, q) =

l
l'~ exp — + —px

l
(4)

k 7rh) k 2II

in the coordinate representation with expectation values

&P) = p and &q) = q, and uncertainties Ap = Qhs /2
and Aq = Qh/2s. The distribution (3) is normalized
with respect to the measure dy' = dp' dq'/2' h.

The Husimi density (3) of a coherent state (4) is

g (p', q'I p, q) =
I& p', q'I p, q) I'

—( p' —p) j's2 h —s(q' —q)2 /2 h

i.e., a Gaussian density centered at (p, q) in phase space.
The squeezing parameter s = Ap/Aq can be adapted to
the problem under investigation [note that the harmonic
oscillator (unit mass, frequency cu) coherent states have
s = co].

One can now explore the quantum phase space dy-
namics starting an initial wave packet l'P„~(t = 0)) =
l p, q) localized at (p, q) and compute from (3) its Husimi
density

Q ( p', q', p, q; t) =
&
p'. q'I+„,,(t)) '.

In particular, one can compute the stroboscopic snapshots

g (p', q', p, q; t„) at times t„= nT, n = 0, 1, 2, . . . .
Contrary to the classical case, the quantum phase

space distribution does not converge towards an invariant

S(p. q) =— 0 (p'. q" p q)» 0 (p' q" p, q) dr'

(8)
as a function on phase space (p, q) which measures the
(time averaged) spreading of a minimum uncertainty wave
packet initially centered at (p, q). The map (p, q) ~
S(p, q), which can be easily plotted as a function on
phase space, yields a global phase space picture of the
dynamical localization properties of the quantum system,
which clearly reflects the classical phase space structure,
as will be demonstrated in the following example. It
should be noted that the entropy (8) satisfies S(p, q) ~ 1,
with an equality only if g agrees with the coherent state
density (5) [9].

It is instructive and convenient for numerical com-
putations to rewrite the expressions above in terms of
the quasienergy states of the time-periodic system, i.e.,
solutions of the time-dependent Schrodinger equation
of Floquet form l'If (t)) = e "' " lP (t)) with T
periodic state l P (t + T)) =

l P (t)). The e are the
quasienergies.

For an initially coherent state lW„~(t = 0)) = lp, q),
the Husimi distribution (6) of the time-evolved state at
times t„= nT, n = 0, 1, . . . can be written as

distribution. It shows fIuctuations for all times, which
can be described within the framework of random vector
theory (see, e.g. , the discussion in [1,8]). The long-time
average of this fluctuating distribution converges:

N

a(p'. q" p, q) =
~ I

pe(p'. q"p. q t.) (7)
n=O

g ( p', q', p, q) is normalized with respect to the measure
dy' and symmetric: Q (p', q', p, q) = g (p, q; p', q').

The quantum densities g (p', q', p, q) could now be
compared with the classical ones as a function on phase
space (p', q') for special initial distributions centered at
selected values of (p, q). Here, however, we are not
interested in the quantum-classical correspondence for
such selected cases. Instead, we will provide a measure
of the localization of these phase space distributions as
provided by the phase space entropy

e(p', q', p, q;t. ) = gl&~lp', q')I'l&~lp, q&l'+ p e '~""" ""'&p,qlp)&pip', q')&p', q'l~)&~lp, q), (9)

with ln) = lP (0)), because of the periodicity of lP(t)).
The terms appearing in the first sum can be identified
with the Husimi densities g (p, q) = l&p, qln)l of the
quasienergy states at time zero, and the second sum
vanishes in the long-time limit yielding

N

g (p', q', p, q) = lim g g (p', q', p, q;nT)
n=O

(10)

This is a doubly stochastic distribution based on the
initial and final Husimi distributions of the quasienergy
states n. The entropy (8) can then be studied as a func-
tion on phase space when the individual Husimi distribu-
tions g (p, q) =

l& p, qln)l of the quasienergy states are
known. Individual distributions of this type have been
investigated by various authors [6,7], and in some cases
close correspondence with individual classical orbits has
been observed. Some overall features could be eluci-
dated by summing over certain subclasses, for example,
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FIG. 3. Classical phase space entropy S,(J, @) shown as a
contour plot over phase space for a driven rotor with f = 0.45.
The Gaussian smoothing width is 5 = 2~6 with h = 0.01.

S(.)(P, q) = —gg (J»q) In@ (J,q),

S4

0.5 1.0 1.5 2.0 2.5

FIG. 4. Classical ( ) and quantum (- — -) phase space
entropies as a function of J for @ = 0 for h = 0.1, 0.0316,
and 0.01.

S(p, q) with ln JI, whereas in the regime of invariant
1

curves it scales as 2 ln h.
Finally, it should be pointed out that the quantum sys-

tem can also exhibit localization on regions different from
the obvious cases of classical stability islands or bounded
chaotic regions. Examples of such cases are unstable or-
bits, "ghost" orbits [12], or regions surrounded by cantori
in chaotic phase space [13]. This will be analyzed in de-
tail in a forthcoming study for different parameter values.
In the present case, one might recognize an additional
chain of six minima surrounding the chain of five minima
which is visible for Fi = 0.0316. A corresponding stable
classical orbit exists for smaller values of f, but no longer
for f = 0.45 used in the present study. These localiza-
tion properties may also be responsible for the differences
still existing between quantum and classical entropies in
the chaotic region for the smallest values of h in Fig. 4.

The basic quantity of interest in the present study,
the quantum phase space entropy S(p, q) defined in (8),
shows some similarity to the entropy in the quasienergy
basis fcr]

which has been considered previously [1,4,8]. Such a
phase space entropy has, however, no direct classical ana-
log. Furthermore, S( )(p, q) shows random fluctuations
of order h'i [14], which are in general not negligible
and which do not appear in S(p, q). Moreover, it can
be shown that S( )(p, q) ~ S(p, q). In addition, the en-
tropy S(p, q) turns out to be the Wehrl entropy [9,15] for
the statistical operator p = g g l n)(n l

with weights

g. = 1(p, ql~)l'.
In conclusion, we have demonstrated that the dynam-

ical phase space entropies for quantum systems provide
a useful quantitative measure of the phase space localiza-
tion properties on (classically) regular and chaotic regions.
Additional more detailed applications and more material
on the relation to other entropylike measures will be re-
ported elsewhere.
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