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Multiparticle Dynamics in an Expanding Universe
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Approximate equations of motion for multiparticle systems in an expanding Einstein-deSitter universe
are derived from the Einstein-Maxwell field equations using the Einstein-Infeld-Hoffmann surface
integral method. At the Newtonian level of approximation one finds that, in comoving coordinates,
both the Newtonian gravitational and Coulomb interactions in these equations are multiplied by the
inverse third power of the scale factor R(t) appearing in the Einstein-desitter field and they acquire
a cosmic "drag" term. Nevertheless, both the period and luminosity size of bound two-body systems
whose period is small compared to the Hubble time are found to be independent of t.

PACS numbers: 98.80.Hw, 04.25.Nx

It is usually assumed that local systems such as atoms,
the solar system, and even galaxies are unaffected by
the cosmic expansion of our universe since, it is argued,
if everything expanded equally, the expansion would be
unobservable. Misner, Thorne, and Wheeler [I] (MTW)
have likened the situation to pennies attached to the
surface of a balloon. As the balloon expands the distance
between the pennies increases while their size remains
fixed. This being the case it follows that there must
be some maximum scale, assumed by MTW to be
the distance between clusters of galaxies, below which
systems are not affected by the expansion. As reasonable
as this view appears, it nevertheless raises at least as many
questions as it purports to answer. What determines this
maximum scale? What "shields" systems smaller than it
from the cosmic expansion? Do these systems live in their
own space-time and if so how do they communicate with
the cosmic space-time? And what if we were to paint dots
on MTW's balloon instead of affixing pennies to it'? I am

going to argue that there is only one space-time and that
all physical systems, big or small, feel the effect of the
cosmic expansion in one way or another. The problem
then is to determine the effect of this expansion.

If one knew the dynamical equations of motion of var-
ious types of multiparticle systems in an expanding uni-
verse then of course one could determine what effect the
expansion has on their evolution. But simply to postu-
late some such equations begs the question. There is,
however, a procedure for deriving these equations directly
from the Einstein-Maxwell field equations of general rela-
tivity without the need of any ad hoc assumptions. This
procedure is the Einstein-Infeld-Hoffmann [2] (EIH) sur-
face integral method. While not well known, it is in fact
the only way to be sure that the equations of motion used
for a given system are compatible with the field equa-
tions of general relativity. To obtain these equations one
integrates the field equations (Einstein for uncharged par-
ticles, Einstein-Maxwell for charged particles) over small
surfaces surrounding each particle in the system. The re-
quirement that each integral be independent of the par-

ticular surface chosen leads to the equations of motion.
As such the EIH method does not use singular right-hand
sides of the field equations as do other methods nor does
it encounter infinities that must be renormalized.

To evaluate the integrands on the surfaces one of course
needs to know the fields on these surfaces. Since the field
equations are nonlinear it is not possible to obtain exact
solutions for a given distribution of sources. The best
one can do in general is to obtain approximate solutions.
The resulting equations of motion are therefore also
only approximate and only apply to systems for which
the approximations are valid. In their original work,
Einstein and his collaborators perturbed the gravitational
field about its "flat" Minkowski values and assumed that
their systems were "slow, " that is, the light travel time
TL across the system is small compared to characteristic
times Tz of the system such as its period. In the case of
an expanding universe one perturbs one of the Robertson-
Walker-Lemaitre fields; in this Letter I give the results for
perturbing the Einstein-deSitter field given by

g~, = diag[I, R(t), R—(t), —R—(t)]

where R(t) = (t/to) I and t is the cosmic time. In what
follows I will assume that T~ is less than the Hubble time
TH = R(t)/R(t) as well as being large compared to Tt. .

The most convenient form of the field equations for
the gravitational field g~, and the electromagnetic field
F~' to use in constructing the EIH surface integrals is
that given by Landau and Lifshitz [3] and they are of
the form (I will use units in which G = c = I, latin
indices run from 1 to 3, greek indices run from 0 to 3,
and I employ the Einstein summation convention and the
comma notation to denote partial derivatives)

where

p"' = (—g) (T"' + tLL)
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(q —gF '), =0 and F~„,
~

=0. (2)

charged and uncharged sources we need only find g to
order e~ and g

' to order e~. Therefore we can set

In these equations g = det(g~, ), tIP' =
Q

—g g"', tLL is
the Landau-Lifshitz stress-energy pseudotensor, and T&'
is the electromagnetic stress-energy tensor given by

and

goo = R' + e2h

TP v 1 (gP~F FP~ —4g FPPF~~)
R+a h (6)

(We do not include a matter stress-energy tensor in
the expression for O'P' since the sources of the fields
are assumed to be compact and to vanish on the EIH
surfaces. )

Because of the antisymmetry of F& and U&'I' in their
last two indices it follows that F" and U, s are three-
dimensional curls whose integral over a closed surface
vanishes. As a consequence, integration of Eq. (1) over a
closed spatial surface in a t = const hypersurface gives

where R is a function of t~ alone while h and h" are
functions of both tH and t~ as well as the comoving
spatial coordinates x', x, and x . In what follows we
will consider only uncharged sources and simply state the
results for charged sources.

The field equations require that

V'h=0.

For spherical sources the solution has the form

(Uo —O~")n, dS = 0, h =4+
where n, is a unit surface normal. In a similar way we
get from Eq. (2) the result

(Q —g F" ) on„dS = 0. (4)

qP' = diag(R, —R, —R, —R) .

It is these last two equations, when the surfaces surround
a source point, that are used to obtain equations of motion
for our system. They come from noting that, since these
equations must hold on any two-surface, the sum of the
contributions to the integrals that are surface independent
must by themselves be zero. (The surface dependent
terms will in all cases vanish as a consequence of the field
equations. ) This requirement then leads to restrictions
on the motion of the sources comprising the system. In
practice one chooses the surfaces to be small spheres
centered on the sources and sets to zero those terms that
are independent of the radii of the spheres. It should be
noted that, since all integrals are over surfaces on which
the fields and their derivatives are all finite, no infinite
integrals appear that must be renormalized away.

To solve the field equations it proves convenient to
perturb off of the metric densities g"' whose unperturbed
components are given by

where the index A labels the particles in the system and
the sum is over all A. The I's appearing here are as yet
undetermined functions of t~ and tH and r~ = x —x~
where the x~ are the Ath particle's coordinates and are
also functions of t~ and t~. Inserting this solution into
the surface integral of Eq. (3) with p, = 0 yields the two
conditions

B,„R
Bt v/g = 0 and Bt v/g = 2 mg

implying that

fOg = Vlg R2

where m~ is a constant which we take to be the mass of
the Ath particle.

In order to determine the h" appearing in Eq. (6)
it is necessary to impose coordinate conditions. For
convenience we take them to be of the form

g,,h+V h+4 gR 3 rA B,„xA =0,
~s I"g

which together with the field equations yields the result
that

In addition we employ the method of multiple time scales
[4]. To do so we assume that our fields depend on the
time t through a dependence on t~ = e~t and t~ = eHt,
where ~s = TI (Ts and eH = Tl. /TH, and expand them
in powers of as and eH. (In keeping with our original
restrictions on our time scales we assume that sH ~
as « 1.) Since we are only concerned here with the
modifications in the Newtonian equations of motion for

Vh=o.
These last two equations together determine the h" to be

7 2 r ~H rh = 4R mg Bt,x~ + B,„x~
~A s

The above result, together with the expression for h given
in Eq. (7), is sufficient to evaluate the surface integral in
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Eq. (3) with p, = r When the integrations are carried
out and the terms that are independent of the surface radii
are set equal to zero, one obtains the results that

2 ~e
my&t xp + 2 B~ Bt mgx

Rg

1 I my my

R3 rAB
Isa

Bt„R
2 mg I-) t Xg

s R

(9)

where r~~ = x~ —x~ and where the primed sum is over
all B except B = A.

A similar development can be carried out for charged
particles. Assuming the same temporal scale ordering
as in the uncharged case one obtains from Eqs. (2) the
equation for the scalar potential @

V'/=0,
which for spherically symmetric sources has the solution

IA

Inserting this expression for @ into the surface integral in

Eq. (4) yields the result that

CV

R3
and res =

R

where ct and P are constants, r is the comoving coor-
dinate distance between the masses, and ~ is the orbital

where qz is a constant, which we take to be the charge
of the 4th particle. The resulting equation of motion that
follows from Eq. (3) is the same as Eq. (9) except for the
addition of a term on the right-hand side of the form

1 ~/ qAqB
R3 ~ 3 AB ~

~AB

We see from the above that the effect of expansion is
twofold: It modifies the strength of both the Newtonian
and the Coulomb inverse square laws and adds a kind
of cosmic "drag" given by the second term in the right-
hand side of Eq. (9). To see the effect of these two
modifications consider the case of two uncharged particles
in circular orbits about each other with eH « ~~. In this
case the equations of motion (9) yield the results that

angular velocity. It follows that

co = const and Rr = const

with similar results holding for particles bound together
electrically.

In the Einstein-deSitter universe the comoving coordi-
nate differences between test bodies is constant, while we
see that the coordinate radii of our bound systems de-
creases inversely with R to the order of accuracy of our
approximation. Whether we choose to call Rr or r the
size of such a system is a matter of definition, although it
is customary to call Rr the size. What matters in the end
is that the ratio of the comoving coordinate differences
between test bodies and r is increasing with R. We can-
not say if it is the universe that is expanding while our
measuring sticks remain fixed in length or the universe
is fixed but our measuring sticks are shrinking. Neither
view can be ruled out by observation.

Since the frequencies of both bound systems, charged
and uncharged, are constant to the order of our accuracy,
they each can be used as clocks. Thus we see that
"gravitational" and "electrical" clocks will both measure
cosmic time. We expect of course that in higher orders
of approximation these results will no longer hold. If
Rtt Es, the two terms in Eq. (9) will be of the same
order of magnitude as the other terms so that our clocks
will not measure cosmic time, although they will remain
synchronous and their sizes will change with time. In
the higher so-called post-Newtonian approximations they
will not even remain synchronous. What effect these
modifications might have on the long time evolution of
physical systems such as stars has still to be explored.
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