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Neural Network Differential Equation and Plasma Equilibrium Solver
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A new generally applicable method to solve differential equations, based on neural networks, is
proposed. Straightforward to implement, finite differences and coordinate transformations are not used.
The neural network provides a flexible and compact base for representing the solution, found through
the global minimization of an error functional. As a proof of principle, a two-dimensional ideal
magnetohydrodynamic plasma equilibrium is solved. Since no particular topology is assumed, the
technique is especially promising for the three-dimensional plasma equilibrium problem.

PACS numbers: 07.05.Mh, 02.60.Lj, 52.55.Fa, 52.55.Hc

(x) = tanh(x/2). (3)
We note that it is usually beneficial to perform a linear
scaling of the input (x) and output (z) variables such that
they are of order 1.

In this Letter we propose a new method to solve
differential equations based on neural networks. To
demonstrate the potential of the method, it is applied to
the two-dimensional plasma equilibrium problem.

The general problem to which the method is applicable
is of the form

D(f(x)) = 0,
where D is a differential operator (which may be nonlinear
and nonhomogeneous) and f is a mulitvariate function of
x that satisfies appropriate boundary conditions so that it
is a unique solution to Eq. (1).

The new method consists in approximating the solution

f(x) with a neural network. The training process of the
neural network is a little different from the usual procedure
(which consists in training the network by presenting it
with examples of a known solution): Here we adjust
the network weights by means of a variant of the error
backpropagation algorithm in order to minimize (a) Eq. (1)
on the whole domain within the given boundaries and
(b) a penalty functional that depends on the boundary
conditions.

We approximate the solution using a network of the
multilayer perceptron type with one hidden layer (MLP-
1). This type of network is capable of approximating an
arbitrary continuous function to within arbitrary precision,
provided sufficient hidden nodes are present [1—6].

Denoting the network inputs by x = (xi, x2, ~, xJ),
the hidden layer nodes by y = (y~, yz, . . . , yrr), and the
network outputs by z = (zi, z2, . . . , zl. ), we define

1+1 @+1

zi = g wry~ (2)
j=l k=1

where xJ+l and ye+1 are so-called "bias units" with a
fixed value of 1, v, and w are referred to as input and
output weights, respectively, and o.(x) is the sigmoid
function:

We intend that the network output z should provide an
approximation to the exact solution of Eq. (1), f(x). For
that purpose, we define a penalty function E:

E = [E„]'+[E„]', (4)
where Ed, =— D(z) is the left-hand side of the differential
equation Eq. (1) applied to z, and Eb, schematically
represents a functional that is zero if and only if the
boundary conditions are satisfied. For z = f, E = 0, and
since the solution is unique, minimizing Eq. (4) provides
an approximation to f.

Note that due to the simplicity of the network specified
by Eq. (2), it is generally possible to give an analytic
expression for the evaluation of the differential operator
D for a given set of network weights, making the
implementation of the method straightforward for a large
class of differential equations.

E'd, (x) is evaluated for a (sufficiently large) number N
of values (x(i), i = 1, . . . , N) E A, where A is a finite
domain in R; similarly, Eb, (x) is evaluated for a number
Ni, „»d of values (x(j), j = 1, . . . , Nb»„d) H cjoy. The
total error Et,t is defined as the sum of squares all
the values of Eq, (x(i)) and Eb, (x(j)) (with appropriate
weights). Minimization of E„, will then provide a solu-
tion to Eq. (1) on A, satisfying the boundary conditions as
specified, provided (a) the number of hidden nodes is suf-
ficient, (b) the covering of the domain and its boundaries
by (x(i)) is well distributed so that the solution is well de-
scribed by the function values (f(x(i))), and (c) this cov-
ering is dense enough to avoid overfitting (N + Nb„„„d
is larger than the number of free parameters or network
weights). The number of hidden nodes then determines
the maximum attainable accuracy.

For the minimization procedure we use a standard
quasi Newton gradient-descent algorithm. The gradients
of E [Eq. (4)] with respect to the weights u and w can
be expressed analytically if the problem is formulated
properly. The formulation of the solution method as
given above is sufficiently general to permit its direct
application to a wide range of problems in science.

In the following, we apply this method to two test
cases. Both are elliptic second-order partial differential
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equations that appear in the framework of the ideal mag-
netohydrodynamic (MHD) plasma equilibrium problem.

An analytic high P-tokamak equilibrium. —This ex-
ample has most of the ingredients of a full two-dimensional
equilibrium problem. It is stated as follows:

Ed, = V' P —A —Cr cos(0) = 0, (5)
where P is the poloidal fiux function, A and C are con-
stants related to the profiles of the toroidal field and the
pressure, respectively, and (r, @,0) defines a quasicylin-
drical coordinate system related to the usual cylindrical co-
ordinate system (R, P, Z) by R = Rp + r cos(0) and Z =
r sin(0), where Rp = 0.6 m is the tokamak major radius
(here P is the ignorable coordinate). When the boundary
condition Eh, = P(r = a) = 0 is imposed (a = 0.1 m
being the plasma minor radius), the exact solution is [7]

P,„,t&„, = Ii(r —a ) [2A + Cr cos(0)]. (6)
We have selected A = 1 and C = 10 (giving a cylindri-
cal safety factor of q+ = 2 and an average plasma pres-
sure, normalized to the toroidal magnetic field pressure,
of P, = 0.21), and made the identifications xi = R —Rp,
x2 = Z (two input nodes) and uzi = P (one output node;
here o. = 10 is a constant scaling factor used only to
obtain values of zt of order of 1). Using the method out-
lined above, the cost function E = Ed, + Eb, is then min-
imized on an appropriate poloidal grid with a small neural
network having only K = 15 hidden nodes. Conver-
gence of the minimization, starting with random network
weights, is extremely rapid: In about 500 iterations a mini-
mum is found with an average error of 0.12% in P. Fig-
ure 1 shows the level contours of P„„asobtained from the
trained network [visually indistinguishable from the ana-
lytic solution, Eq. (6)]. Figure 2 shows the reconstruction
error (i.e. , /net Panatytic) vs l//anatytic for 2000 points on
an equally spaced (r, 0) grid.

A Grad Shafvano-v solver for fixed boundary tok-amak
equilibria. —The solution of the tokamak plasma equi-
librium problem is well studied [7]. The problem can
be stated as follows: determine the poloidal flux function

P(R, Z) such that the Grad-Shafranov equation is satisfied:
N —2

Ei = g bt P+ ppR +F =0,
rig

(7)

where the Grad-Shafranov operator is
Rtt[(I/R)BtP/tiR]/BR + tI P/BZ, p(P) is the pressure
profile, and F(t/t) is related to the poloidal current profile.
Equation (7) is evaluated for N interior points of the
plasma cross section (0). This equation, along with
adequate boundary conditions and a suitable specification
of the two source profiles p(P) and F(P) describes
toroidally symmetric ideal MHD equilibria. To eliminate
the arbitrary integration constant in P, and to give to P
its physical meaning of a magnetic field integrated over a
surface, we require that there is a magnetic axis (R,„,Z,„)
where the flux P attains its minimum, being equal to 0:

E2 = [p(R,„,Z„) —0] = 0. (8)

The location of the magnetic axis (R,„,Z,„) is not known
a priori. Below we will explain how we treat this
problem.

A suitable boundary condition for the differential equa-
tion is B n = 0 at the plasma boundary (fixed-boundary
problem with a perfectly conducting wall), where B is the
magnetic field and n is the normal to the boundary, or

Nbound

E3 g [0 Abc d]sti o, (9)
m=1

which is evaluated for Ni,n„„d boundary points (on cia).
The penalty functional E&,&

for minimization then be-
~3 2comes E&„=~, 1 o.;y;E;, where o.; and y; are weight

factors. The factors y; are chosen equal to the inverse
of the desired values of each E;, y; = (Etpl) 2. Thus,
for a satisfactory solution, y; E; = 1. The factors n; are
initially equal to 1 and are adapted as the minimization
algorithm advances: every N„,&

iteration the o.; are re-
set to the values n, = max(4, y;, E; /3 g; i y; E; ), such
that more work is invested in the E; that is worse. Every
N„,i iteration also the minimum of P as given by the par-
tially entrained network is determined, and the values of
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FIG. 1. Contours of P„„, as computed from the neural
network solution, for the analytic high-P case.

-8
-3

I I I I
I

I I I I I I I I I

-1
(x10 )

0

FIG. 2. Error of the neural network flux P„„with respect to
the analytical flux P,„,t„„, from the exact solution for the high-
p case.
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(R„,Z,„) are changed to indicate this position. Thus the
magnetic axis is updated every N„,i iteration and gradu-
ally approximates its true position.

The N interior points of A and the Nb„„„d points on
the boundary BA must be chosen to cover both regions
homogeneously. Should any large "gaps" be present, then
the solution produced by the network in those regions
cannot be trusted. The total number of data points is
N + 1 + Nb, „,d. This number should be large enough to
avoid overfitting. The total number of "free parameters"
of the minimization problem is given by the number
of network weights, or 4K + 1 [cf. Eq. (2) with 1 =
2 and L = 1]. Thus overfitting can be avoided when
N+ 1+Nb,„„d»4K+ 1.

We choose the same representation of the flux by the
neural network as in the previous example, except that
here n = 1. All gradients needed for the gradient-descent
minimization algorithm (derivatives of Ii/ with respect to
R and Z are derivatives of Et,t with respect to the network
weights) are evaluated analytically

To check the solution we have compared it with the so-
lution generated by the plasma equilibrium solver VMEC

[8—10] for a particular case. VMEC calculates an equilib-
rium, assuming nested flux surfaces, from input profiles
p(I//) and q(I//), where the safety factor q is related to the
current distribution. The equilibrium problem expressed
by Eqs. (7)—(9) is slightly different, since it requires the
profiles p(I//) and F(I//) as input. To obtain the same equi-
librium with both methods, we have passed the VMEC out-
put profile F(I//) on to the neural network solver along with
the input profile p(P). Both profiles are given in terms of
polynomial fit coefficients to the VMEC profiles.

We have selected a D-shaped plasma (JET-like [11])
with Ro = 3.1 m, horizontal minor radius a = 1.35 m,
elongation ~ = 1.66, a safety factor at the boundary
of q = 4, and a total average normalized pressure of
(P) = 4.26%.

In order to have an objective criterion for the quality
of the equilibrium obtained from thisyrocedure, we intro-
duce the force balance error lal = lj X B —&yl/I&pl,
where p, oj = (V'F X e~ —A*/ e@)/R and B = (F .
e~ —'rI/I/i X e@)/R. These quantities can be evaluated
directly from the solution P(R, Z).

Accuracy of the solution —Using a net. work with K =
31 hidden nodes, the neural network solver converges
in 1000 iterations to a solution with an average force
balance error of (l~l) = 2.63%. Figure 3 shows the flux
contours as obtained from the network solver and the
location of the corresponding VMEC flux surfaces. The
average flux error is (AI//z)I/'2 = 1.82 X 10 3 (0 ~ I// s
0.304). A more accurate reconstruction can be obtained
by increasing the number of iterations or the number of
hidden nodes. Figure 4 compares the force balance error,
averaged over the flux surfaces, for the VMEC equilibrium
and the network solution with K = 31 and 127 nodes
((lel) = 1.22%, (AI//z)ii2 = 2.33 X 10 s). The VMEC
error increases near the magnetic axis and the boundary
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since it solves the equation in flux coordinates, so that these
points are singularities. The distribution of the network
error is smooth. It should be noted that whereas VMEC
minimizes the errors on each flux surface separately, the
network minimizes the errors globally. Figure 5 shows the

q profile for the E = 127 case as compared to the VMEC
profile where

1 F(A) dS
ds

R~~ 2~ ~ o t R28
Note that both the flux surface reconstruction (Fig. 3) and
the q-profile reconstruction (Fig. 5) are satisfactory, even
if the force balance error is larger than the VMEC error
(Fig. 4).

Speed of the calculations —In the abov.e calculations,
fifth-order polynomial fits were used to represent the
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FIG. 4. Force balance error for the VMEc equilibrium (dashed
line) and the network equilibrium with both K = 31 and 127.
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FIG. 3. Flux surfaces as generated by the vMEC equilibrium
solver and the neural network solver. Dots indicate the location
of the vMEc flux surfaces; lines are contour levels of the neural
network output at the same flux values. The correspondence is
quite good, especially considering the small number of hidden
nodes of the network (K = 31).
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FIG. 5. Profiles of the safety factor q, as calculated by vMEc
(crosses) and the neural network solver (solid line). The
difference is negligible, even though the difference in the force
balance error is considerable (cf. Fig. 4).

FIG. 6. Dependence of the volume-average force balance
error on the number of hidden nodes of the network (ICI and
the number of iterations.

profiles F(P) and p(P) to obtain the same equilibrium
as VMEC to high accuracy. For high speed calculations,
we use third-order polynomials. This does not reduce the
validity of the obtained equilibrium in any way, since
the original profiles were slightly arbitrary. Figure 6
shows the way in which the volume-average force balance
error drops with K and the number of iterations. The
CPU time for the calculation is approximately given by
tcPU 7tNITER(N + 1 + Nb„„„d)(4K + I), where y is
a proportionality constant that depends on the computer
used. On our Cray YMP-EL (about 5 times slower
than a Cray YMP), y = 1.87 ILs. The solution with
K = 31 nodes and NITER = 1000 is obtained in a time
comparable to the VMEC solution (134 s).

Prospects. —Encouraged by these results, the calcula-
tion of fully three-dimensional (stellarator) equilibria will
be undertaken in the near future. An excellent represen-
tation of the IIux of a Heliac stellarator equilibrium (TJ-
II) has already been obtained with only Itt = 255 hidden
nodes [12], suggesting that the three-dimensional equilib-
rium problem is tractable by this method. Whereas in the
solution of the two-dimensional tokamak equilibrium the
VMEC code and the network use a similar number of free
parameters, this number is about ten times larger for the
three-dimensional VMEC equilibrium TJ-II than for the net-
work. Thus the network provides a more compact repre-
sentation which may be advantageous. Further, the fact
that no assumptions need to be made with respect to the
topology of the solution (nested IIux surfaces) is of spe-
cial interest for the three-dimensional case. Finally, the
method promises to be fast for problems that have to be
solved repeatedly with similar boundary conditions, be-
cause the solver can use the previous solution as its starting
point.

In conclusion, the present relatively simple cases pro-
vide a proof of principle of the power and possibilities of
the new solution method. We stress the major advantages
of the method: (I) It is straightforward to implement for
a wide class of problems. (2) Finite differences are not

used in the solution process. (3) The equations are solved
in real space, i.e., without complicated and costly coordi-
nate transformations. (4) For the ideal MHD equilibrium
problem, no particular topology of the solution (nested IIux
surfaces) is supposed. Thus the possibility of incorporat-
ing X points or islands exists, insofar as permitted by the
equations. Finally, we point out that the method seems
quite generally applicable to the solution of multivariate
differential equations with boundary conditions on a finite
domain that possess a unique solution. We feel, however,
that a rigorous mathematical treatment of the stability and
convergence properties of this method would be welcome.
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