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Breathing Solitary Waves in a Sine-Gordon Two-Dimensional Lattice

J. M. Tamga, ' M. Remoissenet, '* and J. Pouget
Laboratoire Universite de Bourgogne, Phenomenes Non Lineaires, 6 Blvd Gabriel 21000 Dijon, France
Laboratoire de Modelisation en Mecanique, Universite P. et M. Curie, 75252 Paris Cedex 05, France

(Received 31 May 1994)

We study theoretically and numerically the dynamical behavior of a two-dimensional sine-Gordon
lattice. We show that, via modulational instability, an initial-low-amplitude plane wave can evolve
spontaneously into moving localized modes with large amplitude. These nonlinear modes, with
dimensions depending on the characteristic wavelengths of the instability, behave like breathing solitary
waves and present particlelike properties.

PACS numbers: 03.40.Kf, 63.20.Pw, 63.20.Ry

The concept of soliton has now become ubiquitous
in modern sciences, and indeed can be found in vari-
ous branches of physics and mathematics. In the strict
sense, solitons appear in one- (space) dimensional sys-
tems, for which exact multisoliton solutions to various
types of model field or lattice equations can be found.
In two or three dimensions (2D or 3D), however, the situ-
ation becomes generally [1—3] more complicated; of vari-
ous types of nonlinear localized modes (NLM) inherent to
these situations vortices and spiral waves [1]are most typ-
ical; they play an important role in hydrodynamics, optics,
condensed matter physics, and field theory. In this con-
text the phenomenon of energy localization in nonlinear
systems [4] is of intrinsic interest, and the existence of
NLM can be a generic property of nonlinear Hamilton-
ian lattices [5]. Nevertheless, very little is known about
the formation and behavior of such nonlinear entities in
conservative systems. Thus, the question logically arises
whether the remarkable soliton or solitonlike features also
survive in conservative systems with higher dimensions.

To gain insight into this important problem, we have
investigated the dynamical behavior of a 2D sine-Gordon
lattice (2DSGL). For its continuum approximation soli-
tonlike or vortexlike analytical solutions have been pro-
posed [6—11],but few studies [12—14] have been devoted
to the 2DSGL. The aim of the Letter is twofold. On
the one hand, we study how a weak initial uniform per-
turbation can evolve spontaneously into NLM with large

amplitude. On the other hand, we investigate the solitary-
wave and particlelike properties of these robust nonlinear
entities.

We consider an isotropic 2D planar model where rigid
molecules rotate in the plane of a square lattice [15] of
spacing a. Each rotator (molecule) with inertia 1 and
angle of rotation 4 „at site (m, n) interacts linearly
with its first nearest neighbors and with a nonlinear
periodic substrate potential. Here, G is the linear coupling
coefficient and coo is the strength of the potential barrier
or square of the frequency of small oscillations in the
bottom of the potential wells. The equation of motion
of the rotator at site (m, n) is

, '" = —', [(~' +i,. + @ -i,. —2~',.)dt2 a2
+ (C',.+i + ~',.-i —2C',.)]

+ coo sin+ (I)

where co = aQG/J. If the rotation angle 4& „varies
slowly from one rotator to the next one, we can consider
the long wavelength limit or continuum approximation
(CA). In other terms the CA is valid [16] if the strength
of the coupling is larger than the strength of the potential
barrier; that is, if the discreteness parameter co/coo =
d ~ 2a or 3a. Under this condition the CA of the
discrete Frenkel-Kontorova (or 2DSGL) equations (1) is
obtained by expanding in Taylor series 4 „ in terms of
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its derivatives about the point (x = ma, y = na) .Then,
(1) is approximated by the 2D-SG equation

4i„—co(4„+ iIiyy) + coo siniIi = 0, (2)

which describes the evolution of the scalar field 4(x, y, t).
Equation (2) will be used below.

In the weak amplitude limit we use the multiple
scale perturbation technique [17,18]; that is, we con-
sider a rapid carrier wave, with a slowly varying enve-
lope P(X, I', T), propagating in the x direction: ~Ii

eP(X, I', ~) exp[i(cu, t —k, na)] + c.c. Here, X = sx,
Y = ey, and r = e t, where e is a small parameter,
~ (( 1 represents the slow variables appropriate to the
slow envelope variations; k = (k„0) is the wave vector,
cu, is the circular frequency of the rapid carrier wave, and
c.c. denotes the complex conjugate. Then, inserting the
above expression into (1) we obtain [17—19] a 2D nonlin-
ear Schrodinger (NLS) equation

( 0 + I g PX) + (Pi IXX + P2$YY) + Q I & I'p = 0,
(3)

where Vg = (cia/ace, ) sin k, a, Pi = (cia/2~, ) cos k, a,
P2 = cp/2'„and Q = cop/4' represent the group ve-

2' 2

locity in direction Ox, the dispersion coefficients, and

co, = [coo + 4co/a (sin k, a/2)]'~ . A linear analysis of
small perturbations [20,21] of the elementary plane wave
solution of (3), P = Poexp(iggor), with constant am-

plitude Po, leads to a criterion for modulation instabil
ity: Piqr + P2qT ~ 2ggo. Here, qi. and qT are the2 2 ( 2

wave numbers of the perturbation in the longitudinal and
transverse directions, respectively. Accordingly, an ini-
tial perturbation with a wave vector (qz, qT) satisfying
the above relation can trigger instabilities in both di-
rections of the lattice, with growth rate o. = (Pique +
P2qT) (2Q tjlo Pi ql P2qT). The maximum instabil-

ity occurs for grado = 0, that is, for P ~ qL + P2qT =
Qgo, and the corresponding growth rate is o. = Qfo.
In the special case of a unique longitudinal perturba-
tion (qL 4 0, qT = 0) or a unique transverse perturba-
tion (qT 4 0, qr. = 0), the maximum instability occurs
for qi. m

= 2~/&L~ = Pong/Pi «qTm 2~/~Tm =
Pri/QIP2, respectively. From these relations we obtain
the ratio of the characteristic wavelengths Al and AT

Ar. /AT = icos(k, a) —(d/a) sin (k, a)

X [1 + 4(d/a) sin (k, a/2)] j', (4)

which depends on the discreteness parameter d and k, the
wave number of the carrier wave. As we shall see in the
following, Eq. (4) will allow us to explain the geometry
of the NLM. The above results tell us that, in the low
amplitude limit, the 2DSGL Eq. (1) can be reduced to a
2DNLS Eq. (3), which is useful to predict instabilities,
only, but not their evolution as time will increase. We
note that, owing to the presence of the sine term in

(1), these instabilities cannot evolve into a collapse as it

could be obtained by performing a direct numerical study
of (3).

Under these conditions by means of numerical simula-
tions, we investigate the response of the lattice to an initial
low amplitude plane wave modulated by a small perturba-
tion. The simulations are performed (assuming a = 1) on
lattice equations (1). We consider a lattice plane made of
106 X 82 points along with periodic boundary conditions,
along x and y directions. The initial condition is pro-
vided by a harmonic carrier wave traveling in the x direc-
tion with small amplitude 2' = 0.7, wave vector k, =
0.18, and frequency co, = 0.39, which satisfies the dis-
persion relation cu, = [~o + 4co/a (sin k, a/2)]'i, and
velocity v, = cu, /k, = 2.2; we have chosen coo = 0.3.
In order to trigger the instability of this wave, small
(=10 Po) random perturbations (noise) are superposed
to the initial velocity. Then, the system is isolated and
let to evolve. A simulation for d = 4.7 shows that, as
predicted by (3), the initial plane wave is modulationally
unstable. When time further increases, the unstable state
evolves into a localized NLM with large amplitude as
shown at t = 1500 in Fig. 1(a). As time further evolves,
the NLM moves freely as a whole along the x direc-
tion without spreading out, as represented in Fig. 1(c) for
t = 3110. Inside the NLM we have (~Ii;+i i

—~I~;~)/a ~
0.45 rad and (iIi;i+i —iIi;i)/a ~ 0.35 rad. These re-
sults suggest that the CA can be used to replace these
finite differences by the gradient components Bragi/Bx and
Br'/By Thu. s for d = 4.7, to a first approximation, the
lattice effects connected to a possible [22] Peierls-Nabarro
barrier may be ignored and the NLM can be consid-
ered as a continuous entity as it will be assumed below
when considering the motion of the center of mass of
the NLM.

This NLM is ellipse shaped with the following dimen-
sions: L~ = 12.7 and Ly = 21 at half width along the x
and y directions. We note that the ratio L, /L~ = 0.60
approaches the theoretical ratio Al /AT = 0.76 calcu-
lated from (4). Moreover, (4) shows that L, /L~ ~ 1

when dk, becomes small; this suggests that in this case
circle-shaped NLM should form. To check this expecta-
tion, keeping d = 4.7, we have performed numerical sim-
ulations for k, = 0.059. As observed in Fig. 2, we obtain
a NLM that approaches a circular shape: L = 16, Ly
18, L, /LY = 0.89, and the agreement with Ai. /AT
0.96 calculated from (4) is satisfactory. Moreover, simu-
lations performed for d = 2.1, that is, close to the fully
discrete regime, and k, = 0.18 also show that circle-
shaped NLM can emerge with L = 7, Ly = 8, and
L /L~ = 0.88. In this case ALIIATm = 0.94; again, the
agreement is good. If the amplitude 2PO of the initial
plane wave is increased, the mean number of NLM's in-
creases (not represented here). However, the NLM is
deformed; this phenomenon is attributed to their mutual
interactions which become important with their number,
but will not be considered here.
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FIG. 2. For d = 4.7 and k, = 0.059, an initial plane wave
evolves into a circle-shaped NLM as depicted for t = 1200.
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The fact that the NLM emerges spontaneously from an
uniform initial state suggests that it is a stable nonlinear
entity. In order to obtain more details about the dynamics
of such a NLM, we have determined its profile in the
x direction by representing (see Fig. 3) the quantity

sgnCt which corresponds to the energy distribution
inside the NLM. The maximum amplitude, A = 4.96,
is very large compared to the weak amplitude 2' = 0.7
of the initial extended perturbation. It presents an internal
structure oscillating at frequency AR = 0.15 which lies
below (Az ~ r//tt = 0.3) the phonon frequency band of
the harmonic lattice described by (I) with sin&It

If one ignores this internal dynamics, the NLM
moves as a whole with average velocity v = 0.45. These
characteristic nonlinear signatures suggest that the NLM
properties look like those of a 1D-SG breather soliton. In
this context it is interesting to point out that the existence
of breathers was recently proved for a broad range of
Hamiltonian networks [23] of weakly coupled oscillators.

To further investigate the stability of the NLM once it
was formed, we have switched the boundary conditions;
that is, at time t = 1500 we have replaced the periodic

FIG. 1. (a) Representation at time t = 1500 of the NLM
which emerges from the initial unstable plane wave, for d =
4.7 and k, = 0.18. At each point (x, Y), the arrow denotes
a vector u( —LIt~, LID, ). Here, for convenience only, the region
where the NLM is located is shown. (b) Representation of
sgn(dIt)dIt~ which is proportional to the energy distribution in
the lattice. (c) Representation of the NLM, later on, at time
t = 3110.

—9.02
54
X

80 i06

FIG. 3. Evolution of the oscillating (breathing) profile of the
NLM as it propagates along the x direction.
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boundary conditions along the x direction only by fixed
boundary conditions at x = 0 and x = 106. Under these
conditions, which correspond to an infinite potential well,
the NLM that initially (at time t = 1500) moved from
the left to the right is now rejected by the boundary
at x = 106. Then, it reverses its sense of propagation,
travels again, and refiects at the opposite boundary,
x = 0, and so forth. These results confirm that the
NLM is very robust. It is an oscillating concentration
of energy that may be considered as a nontopological
solitary wave, it behaves like an extended (elementary)
particle. In this particular context we can consider, as
seen above, that for d large the NLM behaves like a
quasicontinuous entity. Under this approximation we also
neglect the internal oscillations of the center of energy
(mass). Thus, we analyze the dynamics of the NLM by
using (2) and an extension [24] of the Ehrenfest theorem
of quantum mechanics to nonlinear Klein-Gordon solitary
waves. Thus, after some calculations we get the equation
describing the motion of the "center of mass" G under the
action of an external potential V(x, y):
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FIG. 4. Plot of the velocity dXo/dt of the center of mass of
the NLM (for k, = 0.18 and d = 4.7), as a function of time
t, as it moves in a harmonic potential well (see text). The
amplitude and period of the oscillations decrease with time and
the NLM becomes delocalized over a time tF = 800.

M(d OG/dt ) = —co coo (1 —cos@)gradV dx dy .

Here, OG = (XG, 1'G) where 0 is the coordinates origin
and M is the mass (energy) of the perturbed NLM:

(z (0 t)' + (co/2) t:(4.)' + (AY)']

+ coo[1 + p, V(1 —cos@)])dxdy, (6)

where p, « 1. For the free motion (V = 0 everywhere,
YG = const) with periodic boundary conditions, exam-
ined above, we find dXG/dt = trG = 2.8. For the back
and fourth motion in an infinite potential well (V = 0 ev-
erywhere and V = ~ at x = 0 and x = 106) along the x
direction, also studied above, we have not detected energy
radiation from the NLM. Like for the free motion, the
time tF, or so-called "Ehrenfest time" [25] (by analogy
with quantum mechanics), over which the NLM could be
delocalized is very long, say infinite. We have also stud-
ied the NLM motion in the presence of a harmonic poten-
tial p, V(x) = (p, /2) (x —xo), with p, = 0.004, which at
time t = 4100 replace the periodic boundaries in the x di-
rection. The velocity of the center of mass dXG/dt was
calculated (Yo = const) numerically and plotted in Fig. 4
as a function of time. Contrary to the square well poten-
tial case, both the amplitude and period of oscillations of
G decrease with time. It means that with such a pertur-
bating potential, which is nonzero everywhere except at
center xo = 53, the NLM (quasiparticle) radiates its en-

ergy or mass during its motion and becomes delocalized
over a time tF = 800 « t~.

In conclusion, breathing NLM can form and propagate
in a 2D sine-Gordon lattice. Such 2D solitary waves
are very robust; they present properties of extended
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quasiparticles. Although until now we have been unable
to find any approximate analytical solitons describing
them, we think that such very long-lived NLM should
play an important role in the various physical systems
modeled by the 2D-discrete SG equation.
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