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Determination of the Nuclear Quadrupole Moment of ~7Fe
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We determine the nuclear quadrupole moment Q of the most important Mossbauer nucleus Fe by
comparing experimental quadrupole splittings with calculated electric field gradients (EFG) for a large
number of different Fe compounds. These ab initio calculations are based on the linearized-augmented
plane-wave band structure method. From the slope of the linear correlation between theoretical EFGs
and experimental quadrupole splittings a new value of Q( 7Fe) = 0.16 b is deduced, twice as large as
previously suggested. Our results should also stimulate nuclear physicists to revise nuclear structure
shell model calculations of Q.

PACS numbers: 76.80.+y, 71.25.pi, 71.25.Tn

Mossbauer spectroscopy and other hyperfine interac-
tion measurements such as nuclear magnetic resonance
(NMR), nuclear quadrupole resonance (NQR), or per-
turbed angular correlation (PAC) are widely used experi-
mental techniques that provide local information on the
interaction of a nucleus with the surrounding electronic
charge distribution. An interpretation of such measure-
ments can lead to a detailed knowledge of the electronic
and magnetic structure in a solid. One of the measured
quantities, namely, the quadrupole splitting 50, is pro-
portional to the product (of the principal component Vzz)
of the electric field gradient (EFG) times the nuclear
quadrupole moment Q. Since the EFG is directly related
to the asphericity of the electron density in the vicinity
of the probe nucleus, the quadrupole splittings allow the
estimation of covalency or ionicity of chemical bonds in
solids, provided Q is known.

Although Q is a purely nuclear quantity, for some
isotopes these quadrupole moments are not well known.
The method presented in this Letter to determine Q(s7Fe)
can also be applied to other nuclei and therefore has large
implications on all the experimental techniques mentioned
above. In addition, it can be used as reference for
other methods determining Q, e.g. , nuclear structure shell
model calculations.

The Mossbauer isotope Fe is probably the most fre-
quently used nucleus for measuring hyperfine interactions.
Nevertheless, its quadrupole moment is still a matter of
controversy. While for a long time Q( Fe) was be-
lieved to be in the range from 0.15 to 0.28 b, Duff,
Mishra, and Das [1] found Q = 0.082 b by comparing
Hartree-Fock calculations with Mossbauer measurements
of FeX2 molecules (X = CI,Br) trapped in solid Ar. Sub-
sequently, this value for Q was supported by Vajda et al.
[2] using nuclear structure (shell-model) calculations of
Q(5 Fe) and the known ratio of the quadrupole splittings
of ~4Fe and s7Fe impurities in hcp Zn and Cd [3].

During the last decade EFG calculations for solids
became available based on the full-potential-linearized-
augmented plane-wave method (LAPW). These proved

to be both accurate and reliable, which has been demon-
strated for various solids including ionic insulators like
LisN [4], Cu20 [5], TiOz [6], several Hg (I) and (II)
halides [7], (hcp) metals [8], and the high T, superconduc-
tors [9). These successful applications give us confidence
that we can check and redetermine the nuclear quadrupole
moment of Fe.

In the present calculations we employ the full-potential
LAPW method as embodied in the WIEN95 code [10] in
a scalar relativistic version without spin-orbit coupling,
which is one of the most accurate schemes for electronic
structure calculations of solids. In addition to the usual
LAPW basis (with a large plane-wave cutoff), we include
local orbitals [11]for high lying core states —the so called
semicore (SC) states —to increase the fiexibility of the
basis set and use a sufficiently fine k sampling.

The EFG tensor is defined as the second derivative
of the Coulomb potential with respect to the Cartesian
coordinates at the nucleus. The Coulomb potential is
one of the crucial quantities of an accurate (full-potential)
band structure calculation and in LAPW is given as lattice
harmonics expansion inside the atomic spheres. In this
representation the required derivatives can be determined
straightforwardly [4]. A more detailed description of EFG
calculations within the LAPW method can be found in
Refs. [5] and [9].

Exchange and correlation effects are treated within den-
sity functional theory (DFT) using the generalized gradi-
ent approximation (GGA) [12]. Fe compounds are quite
a challenge for theory, since often various magnetic inter-
actions play an important role and different (non)magnetic
phases are separated by a small energy only. An exam-
ple for such a problem is the well-known failure of the
standard local spin density approximation (LSDA), which
predicts iron to be nonmagnetic and fcc instead of be-
ing ferromagnetic with the bcc structure. However, us-
ing GGA instead of LSDA the correct ferromagnetic bcc
ground state for Fe is obtained [13] and similar improve-
ments were found in other examples such as FeF2 [14,15].
Because of these difficulties, we do not choose just one
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Fe compound but perform calculations for the following
classes of compounds: (i) The ferromagnetic (FM) met-
als like Fe4N, YFe2, FezP, or FeNi. (ii) The nonmag-
netic (NM) insulators FeS2 (pyrite and marcasite) or FeSi.
(iii) The antiferromagnetic (AF) Fe (III) insulator Fe203.
(iv) The nonmagnetic metals FeZr2 or FeZr3. (v) The an-
tiferromagnetic Fe (II) insulators FeFz, FeClz, and FeBr2.

The theoretical and experimental EFGs of these com-
pounds are listed in Table I. The results are ordered ac-
cording to an increasing EFG whose theoretical value is
plotted in Fig. 1 against the experimental h~ to show the
excellent linear correlation. From the slope of a least-
squares fit through these points we deduce a Q(s7Fe)
value of 0.16 b with an estimated uncertainty of about
5%. The dotted line in Fig. 1 represents the previously
accepted value of Q = 0.082 b.

The first four classes represent compounds that are well
described by band structure calculations based on DFT,
since they are not highly correlated systems. In fact,
we find a very good correlation between theoretical and
experimental EFGs, and the remaining small differences
will be discussed below. It is worth mentioning that our
results are almost identical using LSDA instead of GGA.

However, the fifth class, the AF insulators FeC12, FeBr2,
and FeF2 are much more challenging cases for theory, since
they are strongly correlated Fe (II) compounds and their
correct insulating behavior can only be obtained within
GGA [14]. Consequently, the EFG depends sensitively on

TABLE I. Theoretical and experimental Fe EFGs in various
Fe compounds including the temperature of the measurements.
The experimental quadrupole splittings have been converted
to EFG using Q(5 Fe) = 0.16 b determined by a least-squares
procedure. The experimental sign is only given when known.

the choice of the exchange-correlation functional, e.g. , for
FeF2 the EFG is +6.15 X 10 ' or +16.8 X 102' V/mz
for LSDA or GGA, respectively. Nevertheless, even the
EFGs of this class fall onto the regression line, and the
value for Q does not change by more than 10% if one
would exclude these cases from the fit.

In the following paragraphs we discuss the sensitivity
of the EFG to various parameters as well as the physical
origin of the EFG for selected examples. We mentioned
above an uncertainty in g of about 5%. This might, how-
ever, stem partly from experimental difficulties such as
fitting procedures or temperature effects, which can be se-
vere especially for magnetic metals, where measurements
were often done at room temperature (Table I). Such tem-
perature effects can easily change measured quadrupole
splittings by as much as 20%, e.g. , in Fe2P Ag increases
from 0.09 mm/s (15 K) to 0.12 mm/s (200 K) and from
0.20 mm/s (15 K) to 0.21 mm/s (200 K) at the Fe (3g)
and Fe (3f) positions, respectively [16].

All theoretical values listed in Table I are calculated us-
ing lattice constants and internal parameters from experi-
ment, except for FeZr3, where only the lattice constants
have been available (space group Cmcm; a = 6.285, b =
20.764, c = 16.643 a.u. ) [17]. In that case, we optimize
the Fe and Zr positions using forces and find for Zr in (8f)
y = 0.139 and z = 0.061, for Zr in (4c) y = 0.4155 and
z = 0.25, and for Fe in (4c) y = 0.731 and z = 0.25.

Since the EFG might be strongly affected by local geo-
metries, we test for some cases the EFG dependence on
internal parameters, e.g. , for FeS2, which crystallizes in
two different structures, pyrite (space group Pa3) and
marcasite (Pnnm). The pyrite structure consists of four
Fe in (4a) and eight S atoms in (8c) with one free pa-
rameter u, which determines the S position. We op-
timize this coordinate uth„, z

= 0.3838 by minimizing
Compound

FeBr2
FeC12
FeZr2

FeS, (pyrit)
FeS ~ (marcasite)

Fe4N
YFe2

Fe,P (3g)
Fe,P (3f)
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FeF2
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AF insulator
AF insulator

NM metal
NM insulator
NM insulator
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FM metal
FM metal
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FIG. 1. Correlation between the experimental measured
quadrupole splitting A~ and the theoretical calculated EFG of
various Fe compounds (see Table I). The full line corresponds
to a least-squares fit yielding Q = 0.16 b, the dotted line
corresponds to the previously accepted value of Q = 0.082 b.
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TABLE. II Main EFG contributions (in 102' V/m2) for Fe4N,
Feq03, and FeNi from semicore and valence states (for spin up
and spin down) are listed together with the total theoretical and
experimental values.

Fe4N
clll

Fe20
upp dn up

FeNi

SC
Val:

Total

Expt.

+2.20 + 1.96 —0.04 —0.38
p- p —8.03 —6.39 +0.82 +0.97
d-d +6 90 +0.17 —0 39 + 1.02

—2.92 + 1.99
—2.58 +2.16

—0.23 —0.43
+0.19 +0.23
—0.36 +3.22

+2.58

+2.52

the total energy and find perfect agreement with experi-
ment [18] (u„z = 0.384) and two almost identical EFGs,
—3.53 X 10 ' and —3.47 && 10 ' V/m for the respec-
tive u values. In the case of marcasite the Fe posi-
tion (2a) is fixed by symmetry, whereas there are two
internal parameters for the S position [~(v, w, 0; 0.5—
v, vv + 0.5, 0.5); (4g)]. Optimizing these parameters, we
find reasonable agreement for the w component (w„z =
0.378, w, h,„,z = 0.375), while v differs by about 2%
(v„z = 0.200, v,h, „„~ = 0.205). The EFG increases from
—3.36 && 10 to —3.60 X 10 V/m going from the ex-
perimental to the theoretical parameters, but is still accept-
able. The lattice constants have not been optimized, since
their infiuence on the EFG is usually small and total energy
calculations using GGA are within 1% of the experimental
value.

The main contributions to the EFG originate from the
anisotropy of the charge distribution close to the nucleus,
so that often more than 90% of the EFG comes from in-
side the respective atomic sphere [5,9]. These contribu-
tions can be further decomposed according to different
energy regions into Fe 3p SC and 3d and 4p valence
states and the latter into p-p and d-d parts (from the
product of two wave functions). Table II illustrates these
terms for three selected examples.

Usually the Fe 3p SC-state contribution is less than
10% of the valence part except for Fe4N (and Fe2P),
where they are opposite in sign and half the value of
the valence EFG (Table II). Nevertheless, the total EFG
of Fe4N compares very well with the experimental value
indicating that the SC states are treated accurately by
using local orbitals (cf. discussion on rutile [6]).

In Fe4N the p-p contribution dominates but is partly
canceled by the d-d counterpart. The corresponding
asphericity count

An& = —(nz + nor) —nz (I)

is —0.018 and —0.013 for spin up and spin down, respec-
tively, indicating an excess of p, charge, where z points
towards nitrogen. This Fe 4p-like charge can be inter-
preted as a reexpansion of the tails from the N 2p orbital
tails entering the Fe sphere. The asphericity count for the

d states
1

And = (nd + nd, , ) —nd, —z(nd„+ nd, , ) (2)

is +0.195 (for the spin-up d states) corresponding to a
depletion of d, 2 orbitals due to the covalent interaction
with N leaving parts of the antibonding states unoccupied.
Although And is significantly greater than An„ the much
larger expectation value (I/r ) of the 4p radial function
causes this large p-p EFG contribution.

In Fe203 all contributions are well balanced, indicating
an asphericity that is comparable for p and d states.
FeNi consists of alternating Fe and Ni layers (CuAu
structure). All spin-up contributions to the EFG are
small due to the filled d shell, while the spin-down
d-d contributions dominate and can be attributed to an
excess of d,Y

and d, 2 —y2 charges (And = +0.122). This
preferred occupation of the d orbitals within the Fe layer
causes the positive EFG.

In summary, the present work yields Q( Fe) = 0.16 b,
which is twice as large as found by Duff, Mishra, and
Das [1] using Hartree-Fock (HF) calculations or shell-
model calculations for 54Fe [2], but is within the older
estimates of Q. In fact, a more recent extensive theoreti-
cal HF study for FeX2 [19] indicated that the resulting
EFG is extremely sensitive to basis sets, the ground
state configuration, and the Fe-X distance, so that the
authors concluded that at present no reliable theoretical
prediction of the quadrupole splitting for these molecules
is possible. Another study based on LSDA obtained
the opposite sign for the EFG in these molecules [20],
indicating that one should not trust EFG calculations
for such molecules. The second support for the old
Q( Fe) = 0.082 b value consists of a combination of
nuclear shell-model calculations for Q( Fe), perturbed
angular correlation measurements on Fe, and Mossbauer

Fe spectroscopy carried out for iron imporities in hcp
Zn and Cd [2,3]. We cannot judge the reliability of this
procedure, but this discrepancy to our new Q(s7Fe) =
0.16 b value needs to be resolved, and we suggest that
the calculated Q( Fe) should be revised.

In this work we have demonstrated that EFGs in solids
can be calculated from first principle using recent im-
provements in the description of exchange and correlation
effects afforded by the GGA. Such calculations can be
used together with experimentally measured quadrupole
splittings to reliably determine nuclear quadrupole mo-
ments. We have proven the consistency of our results for
the determination of Q by using several iron compounds
with different chemical bonding and obtain a quadrupole
moment of 0.16 b, twice as large as the value accepted
previously.
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