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Thermodynamic Limit of Density Matrix Renormalization
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The density matrix renormalization group discovered by White is investigated. In the case where
renormalization eventually converges to a fixed point we show that quantum states in the thermodynamic
limit with periodic boundary conditions can be simply represented by a "matrix product ground state"
with a natural description of Bloch states of elementary excitations. We then observe that these
states can be rederived through a simple variational ansatz making no reference to a renormalization
construction. The method is tested on the spin-1 Heisenberg model.

PACS numbers: 75.10.Jm, 75.40.Mg

In the past two years the density matrix renormaliza-
tion group (DMRG& method has been extensively tested
on 1D spin systems, and spectacular numerical accuracy
of both ground state energies and elementary excitations
have been obtained with modest numerical effort [1—4].
In contrast to many of these efforts we explore the nature
of the DMRG construction, using a relatively few number
of basis states to keep the numerical calculations simple.
We have then been able to describe the thermodynamic
limit of the ground state and single-particle excitations in
a way that generalizes very simply to arbitrary numbers
of states. Our work shows that the fixed point limit of
the DMRG leads to an ansatz form for the ground state
and elementary excited states which can be explored vari-
ationally and is fundamentally independent of a renormal-
ization scheme.

For definiteness, we focus on the spin-1 antiferromag-
netic Heisenberg chain with biquadratic interactions

W —1

H = g S„S„+t —P(S„S„+)).
n=O

In the DMRG scheme, we work recursively with blocks
representing, say, n sites numbered from the left on which
a set of states (In&) are defined. In principle, there are 3"
quantum states in the block, but we keep only a set of n,
"important" states in our basis which we expect accurately
describe most operators in the ground state.

In the DMRG recursion the next spin to the right of the
block is absorbed into a new block which now has the 3n,
states of the product representation (In&„ t S Is„)j. The
DMRG now provides a method to construct the projection
operator A, ~p'"~, which projects these states to a set of
new basis states now representing the important n,' states
of the larger block. This is written

p, Sn

where s is the z component of spin at site n. White's
DMRG algorithm is a particularly effective way to
compute a good projection operator.

Two crucial points follow. First, we perform a trivial
change in notation: A„ t [s„]—= A„~I'"1. Second, we

2 Il) = gtr(A[s„] A[s~])2 Is„s~&
{s)}

= g tr(A[s, ]. A[st])Isi . s„&.
IS,)

(4)

(5)

A sufficient condition is that there exists an invertible
matrix Q~ where

Q A[ 1
= sg [&](A[ ])'Q (6)

observe that if a recursion fixed point exists for A, i.e.,
A, [s] ~ A[s] as n ~ ~, we find

Icr&„= g (A[s„]A[s„ t] .A[s)])
Sn Sn-1'.

x Is, s, & si& e IP)o,
where IP)0 represents some state far away from n. The
form of a wave function homogeneous in the bulk of the
chain is now clear: For every n, X n, matrix Q, we define

IQ) = Ptr(QA[s„]A[s„~] A[s~])Is„s, ~
. . s~&. (2)

(S,)

Thus IQ) represents a state that is uniform in the bulk,
but a linear combination of boundary conditions defined
by Icr&„on the left and IP&o on the right [5,6]. The
special case of Q = 1 the identity matrix leads to a
translationally independent state with periodic boundary
conditions. Since this state turns out to be normalized,
we write Il) = 1). For the "AKLT" P = —1/3 model,
our ground state ansatz is exact [7] as are the "matrix
product" states [8—10].

Several important properties of A follow. The projec-
tion should preserve orthonormal bases: 6 = (n'In&.
Using the recursion formula equation (1) and the orthog-
onality of the local spin states and previous block states,
we find

A" '~ [s']A '~[s] (s'Is) (P'IP&
pp'ss'

= g(A[s]At[s]) (3)
S

Hence in matrix form we find g, A[s]At[s] = 1.
We would also like our trial ground state with periodic

boundary conditions to be an eigenstate of parity 2 where
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where A denotes transpose. Then 2 I 1) = (sgn[2 ])"I 1).
This assertion is shown by inserting Q~Q~ into the
trace in Eq. (5), then commuting Q& through each matrix
inside the trace and ultimately canceling the Qz again.

To find Q& multiply each side of Eq. (6) by At[s] and
sum over s. Using Eq. (3) we find that

Q~' = g.[&]g(A'[]) 'Q~ (A'[]) '
= sgn[P] I g (A [s])"'A/"[s] Qz,

"
(srv )

= g.[~]g(A'[] A[])""'lQ,'

1/2

3/2

1 1/2

Thus, Qy, if it exists, is the eigenvalue of the operator

g, (A [s] A[s]) with value ~1. In cases that we have
looked, we have had no trouble finding Qz .

Our basis states should form a representation of total
spin. Since adding an integral spin does not mix half-
odd or integral representations, the block can consist of
representations that are all half-odd or all integer spin.
Keeping approximately twelve states, we have found that
the representations of half integer spin give far better
numerical results, and in this case twelve states consisting
of two spin 1/2 and two spin 3/2 in the total-spin
representations optimize numerical accuracy.

In the diagram in Fig. 1 we have labeled on the left the
"old" representations uniquely by the ordinal number y
with the total spin j. New representations y' and total
spin j' are shown similarly on the right. Implicit in the
labeling of the old states is total j„which is not shown.
There are thus four irreducible representations of total
spin with a total of twelve old states Iy, j,).

When adding the new spin there are 36 "intermediate"
states in the product representation falling into ten dif-
ferent irreducible representations. We project from these
representations back down to four irreducible "new" rep-

/

resentations y'. The nonzero projection terms P~ ~ are

indicated by lines in Fig. 1. There are sixteen nonzero
projection terms which are related by the requirement that
our new states are orthonormal.

Expressing this relation mathematically, we let
uniquely label a representation of total spin and j(y)
denote the value of total spin. Each old state is thus
labeled by Iy, m), where m is the z component of total
spin. The new states are then given by

I y', m'& = p P' '
I y, j(y'), m'&, (7)

y

where Iy, j(y'), m') denotes the intermediate states
formed by Iy) S ls& written using total-spin basis. Since
we demand that the projection operators preserve total j
and I, these states can be explicitly constructed using the
Clebsch-Gordan coefficients ( ji, mi I( j, m) (1, s)& in the
following form:

Iy. j(y'). m') = P & j(y'), m'I( j(y). m) (I'~)&
m&s

&& (I ) Iy, ))

Inserting this into Eq. (7), we find that

I y'. m') = g A" ' "' '[~] (15& I y, »)),
s, (y, nz)

where

A~~'"lt~ l[s] =- P~ ~(j(y'), m'I(j(y), m)(l, s)&.

Thus, although the projection matrices A contain 3 X
12 X 12 numbers, there are in fact only the few degrees
of freedom available in Pi' i' [l l].

/

There are sixteen parameters in P ~ ~. However, de-
manding orthonormality of the basis states turns out to
yield six constraints. Furthermore, we fix the freedom of
mixing arbitrarily the two spin 1/2 and likewise the spin
3/2, giving a total of only eight free parameters [12]. We
can then use a variational principle for the energy to de-
termine these parameters. At this point it is clear that the
DMRG plays no essential role in the construction aside
from providing a guide to which representations to keep.

Expectation values of operators such as the Hamilton-
ian or correlations are given by sums of terms of the form

(llhll& = P tr(A*[s,'] . A [s', ])
Is)) ts,')

X tr(A[s„] .A[si])(s,', . sIlhls„. . s)&.
2 1/2 1/2

3/2

1/2

3 3/2 3/2~5/2

1/2

4 3/2 3/2~5/z

2 1/2

4 3/2

To simplify this, we denote the identity for tensor
products (A B) / lt"l = A 'B/ ' and the relation
tr(B)tr(A) = tr(B A). We define the mapping M from
3 && 3 spin matrices M to n, X n, matrices by

M = QM, i,A"[s'] A[s].
FIG. 1. The construction of the block states is shown when
twelve states are kept in the basis. Old representations are
on the left and new representations on the right. Each line
represents a nonzero projection P~ ~ of basis representations.
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We let S =— (S,S&, S,) define the spin-1 representation

of total spin, and 1 —= Id the "hat" mapping of the 3 && 3
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identity matrix. The operator e' ~z is identified as the
string operator [13].

Using Eq. (8), we see that in formulas also derived by
Fannes, Nachtergaele, and Werner [9], expectation values
of spin, energy, and spin correlation function are given,
respectively, by (1ISI1) = tr( 1" 'S ), (1IS,S~+t I 1) =
tr(1" SS) and (1IS~SJ+ I 1) = tr(1" 'Sl" 'S),
while the string order parameter correlation func-
tion is given by (1IS e' 'l- e' t "-' -S Il) =
tr[1" 'S(e' s=) 'S]. We note that these formulas
are identical to those for one dimensional finite tempera-
ture classical statistical mechanical models, where the
matrix 1 is identified as the transfer matrix and 5~ the
ordinary spin operator.

The spectrum of correlation lengths, i.e., the collection
of all possible exponential decay lengths s of all corre-
lation functions of the form (6~(x)6z(y)) ~ ae
is given by the negative of the logarithms of eigenvalues

of 1 with a similar relation of e' ~z to the spectrum of
string correlation lengths. We note that 1 is guaranteed
to have an eigenvalue of 1 due to Eq. (3). Since the spin
operator is orthogonal to this eigenvalue the next lead-
ing eigenvalue determines the decay of spin correlations.

The eigenvalue of 1 in e' ~z gives the long range order in
string correlations [14].

An ansatz for a Bloch state IQ, k) of momentum k is
given by

IQ, k)„= g e' "tr(A[s„] . A[s +~]QA[s ]. A[s~])

where Q is an arbitrary n, X n, matrix. Using the
cyclicity of the trace, we find that

n —1

(Q', kI Q, k). = P tr[(Q e 1) (e &) (1 e Q') i" '"l.
m=0

The Hamiltonian Ha g(k, n) = (Q', kIHIQ, k)„can be
calculated similarly. When n is a power of 2 these sums
can be computed recursively with an effort of ln(n).

We define the discrete Laplace transform of a se-
ries fa„)„o by F(A) = g„oa„e " . The discrete
Laplace transform of Eq. (9) and of the Hamiltonian
as a function of n is given by a convolution product.

Given the numerical values of 1 and e' ~, we can then
obtain an analytic expression for the discrete Laplace
transform and extract the leading behavior of a, as
n ~ ~. Defining Hg g (k, n) —= (Q', k IH I Q, k)„and
Gg g(k, n) =— (Q', kIQ, k)„, it can simply be shown that
when k 4 0 for large n

H(k, n) = nH) (k) + Ho(k) + 6 (z)",

G(k, n) = Go(k) + O(z)",

where IzI = 0.8 ( 1 represents the next-leading eigen-
value of the matrix 1. We can then solve for the ground

state and excitation spectrum for a fixed value of k in
the thermodynamic limit if the following equation can be
solved:

InHt(k) + Ho(k)] IQ. k) = (nEo + ~~)Go(k)IQ. k)

for all n in the limit of large n. It can be shown
that Ht (k) ~ Go(k), which allows us to identify the
ground state energy Fo per site through the proportionality
H~(k) = EoGo(k). The excitation spectrum Ak is then
given by

Ho(k)IQ, k). = ~~Go(k)IQ, k). .

Similar formulas can be obtained for k = 0. We note
that the last formula is a Hamiltonian for the excitation
spectrum which makes no explicit reference to a ground
state.

These calculations have all been tested on the spin-1
Heisenberg chain, keeping the twelve states discussed be-
fore. The resultant eight-parameter family of trial ground
states was explored to find the state of lowest energy for
p in the range 0 to 1. For p = 0 the variational ground
state energy was found to be Eo(p = 0) = —1.40138,
Eo(P = 0.6) = —2.9184, and Eo(P = 1) = —3.984 55.
The most accurate ground state calculations indicate that
Eo(P = 0) = 1.401 484038 971(4) [1,3].

The result for p = 1 is to be compared with the exact
value of —4 obtained in Ref. [15]. The parity operator
has been computed in all cases, and it is verified that the
ground state has parity —1, where N is the number of
sites.

An important issue is whether or not we have a good
ansatz form for the excitations. For the pure Heisenberg
chain p = 0, we find the single-particle spectrum shown
in Fig. 2. The low-lying triplet branch defines the gap= 0.4094, which is very good compared to the
most accurately known [1,3,16,17] result of 0.410502(1).
Furthermore, we compute the spin wave velocity v =
2.452 to be compared to the calculations in Ref. [3],
where v = 2.49(1) was obtained. Clearly we reproduce
the single-particle triplet excitations with high accuracy
considering the few number of states in our basis. Our
calculation also yields a detailed spectrum of the lowest-
lying "single magnon" excitations shown by dotted lines
in Fig. 2.

Our second lowest energy excitation at k = ~
is a singlet shown by a dotted line in Fig. 2 with

(singlet) = 2.348. As a function of k, the second low-
est single-particle excitation is either a singlet or a spin-2
object, as has also been observed in exact finite size
calculations [18]. For the string order parameter, we
find g(~) = —0.3759, whereas best estimates are [1]
g (~) = —0.374 325 096(2). We find an asymptotic
spin correlation length of l = 3.963 compared to best
estimates of l = 6.03. The severe truncation of our basis
to only twelve states has resulted in the asymptotic corre-
lations being quite poor, although we have verified that
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E(k)

2. 5

1.5

0. 5

correlations. The correlation length spectrum is given by
the eigenvalues of the matrix 1 [9], and it is hard to see
how this can ever give algebraic correlations. However,
intermediate correlations for intermediate lengths appear
to be well represented in all cases.

The present work suggests that the rapid convergence
of the DMRG is explained by the fact that the states
selected are optimally chosen eigenstates of total block
spin. Properly chosen, these states are highly efficient for
building wave functions with a small basis that have low
total spin for all subblocks.

k

FIG. 2. The spectrum for P = 0 is shown. The lowest single-
particle triplet is shown as a solid line, with the lightly shaded
region representing two particle excitations and the dark region
three particle excitations. Solid lines define the boundaries to
the two and three particle continuum. Dotted lines indicate the
spectrum of higher energy single-magnon excitations. The spin
of these dotted excitations is in order of increasing energy at
k = vr: 0, 1,2,2,3,1,1,0.

intermediate length spin-spin correlations are consistent
with more precise calculations [19]. Parity of each of the
elementary excitations is verified by checking the relation
equation (6) with Q rather than the matrices A.

The boundary to two particle excitations at a given
value of k is shown in Fig. 2, computed explicitly by
minimizing the sum of energies of excitations whose
pseudomomentum sums to k, and similarly for the three
particle excitations. These results are shown by the light
shaded and dark shaded regions in Fig. 2. The picture fits
well with previously obtained results.

We have similarly computed spectra for various values
of p [20—22]. Near p = 0.6, the excitation spectrum
at k = ~ crosses zero and becomes negative. Our
interpretation of this is that our ground state ansatz
is deficient, and this shows up as a condensation of
elementary excitations. It is to be noted that Oitmaa,
Parkinson, and Bonner [18] also found that numerically
the gap appeared to vanish rapidly near this value of p,
although they too were unwilling to conclude that this
persisted in the thermodynamic limit.

Our calculations are consistent with two possible sce-
narios of what happens near P = 0.6. A special value
of p could exist where the gap closes and signals a new
phase. Or, the gap is in fact small and persists all the way
to p = 1, but we do not see it due to our restricted ansatz
for the ground state. In this case, we believe more accu-
rate DMRG calculations will also have similar difficulties.

A significant issue appears to be that the DMRG fixed
point seems to invariably lead to a matrix product ground
state that, although it succeeds in reproducing ground
state energies to high accuracy, cannot strictly give a
power-law decay of spin correlations. Thus, we find
the energy very accurately at the Bethe ansatz point

P = 1 without finding the expected power-law decay of
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