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Oblique Confinement and Phase Transitions in Chem-Simons Gauge Theories
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We investigate nonperturbative features of a planar lattice Chem-Simons gauge theory modeling
the physics of Josephson junction arrays. By identifying the relevant topological configurations and
their interactions, we determine the phase structure of the model. Our results match observed phase
transitions in Josephson junction arrays and suggest also the possibility of oblique confining ground
states corresponding to purely planar quantum Hall regimes for either charges or vortices.
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Planar gauge fields play an important role in effec-
tive field theories describing the low-energy degrees of
freedom of two-dimensional condensed matter systems
[1]. When the discrete P and T symmetries are either
explicitly or spontaneously broken, the dynamics of the
gauge fields is usually governed by the topological Chern-
Simons term. In particular, the theory with Lagrangian
(we use units c = 1, 6 = 1)

A' e~ "il B, + B„e""—8 B, (1)

has been proposed [2] as the effective field theory describ-
ing the long distance physics of chiral incompressible flu
ids Here, .the conserved current jt" = (~/7r)ep' 'd B„
describes charged matter fluctuations above the ground
state. The first term in (1) is the standard electromag-
netic coupling, while the second term describes the ki-
netic term for matter fluctuations. This can be written as
a nonlocal Hopf interaction; the introduction of the ef-
fective pseudovector gauge field B~ allows us, however,
to avoid nonlocal terms in the effective field theory [3].
The theory (1) describes a quantum Hall regime [4], as is
easily recognized by integrating out the matter degrees of
freedom and computing the current induced by a constant,
uniform, electric field. This is a purely transverse Hall
current with Hall conductivity given by oH = t~ /2rrg,
from which one identifies K as the charge unit and g as
the filling fraction [5].

In this paper we consider an effective Abelian gauge
theory describing the coupled fluctuations of charges
and vortices in a purely planar system. The model is
formulated in terms of a vector gauge field Az [not
to be confused with the electromagnetic gauge field
A'™in (1)] and a pseudovector gauge field B„. The
charge and vortex fluctuations are described by the
conserved currents jt" = (~/~) et" 'il B, and
(~/7r)e~ 'i) A„respectively. The dynamics of these
fluctuations is governed by the Lagrangian

1 F F~+ —A e~ "t7 B, — F f~
2c Ke2

f f~+ —B e" 'tl B, ,
1 77

(2)
2g 77

where F" —= et" "tl A, and f„= et" 'ti B, are the
dual field strengths associated with the two gauge fields.

In order to explain the physics of this model, let us
first analyze the case g = 0. In this case, the only
interaction between charges and vortices is encoded in
the mixed Chem-Simons term. This represents both the
Lorentz force exerted by the vortices on the charges
and the Magnus force [6] exerted by the charges on the
vortices. Charge-charge and vortex-vortex interactions are
best exposed in the Coulomb gauge Hamiltonian derived
from (2):

p c 1d'x jo — + ~j'
q2 2~2g2 j

(~ —v' +
~ "')

7T2 7T2

2K g 2K

where jt and $1 denote the longitudinal components
of the charge and vortex current densities, respectively.
The first two terms represent long-range Coulomb inter-
actions between charges and vortices. The second two
terms represent the kinetic terms for charge and vortex
motion, respectively. For g = 0, our simple gauge
theory encodes thus the essential physics of Josephson
junction arrays [7] (in the limit where the junction ca-
pacitance dominates, C » Co) upon identifying the two
mass parameters e and g with the charging energy E~
and the Josephson coupling EJ as follows: Ec = e /4,
EJ = g2/27r2 The only differe. nce lies in the kinetic
term for the vortices, which is absent in the Hamiltonian
describing the arrays: It is the absence of this term
that breaks the perfect self-duality of (2) (for g = 0)
under the transformation A~ ~ B~, e ~ g in the model
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describing the arrays. By a simple diagonalization, it is
easy to see that the propagating modes described by (2)
(for il = 0) form a parity and spin (~1) doublet with
topological mass [8] m = ~gr~eg/vr With the above
identification of parameters, and for ~ = 1 (see below),
this mass coincides with the plasma frequency $8EcEJ
of the array. While the spectrum of the propagating
modes in Josephson junction arrays is not necessarily
relativistic, our relativistic model correctly reproduces
the gap. Our model can thus be viewed as a relativistic,
perfectly self-dual model encoding the essential aspects
of the physics of Josephson junction arrays, exactly as the
familiar relativistic Abelian Higgs model reproduces the
essential features of superconductivity. This will be
prominently reflected in the phase structure of the model.

Let us now describe the additional terms proportional
to il. The coefficient of the F~ft" term is chosen such
that the bare and induced Chem-Simons terms cancel in

the effective action for the matter, obtained by integrating
out the vortex degrees of freedom A~. On the contrary,
the vortex effective action, obtained by integrating out
the matter degrees of freedom B„, contains a Chern-
Simons term with coefficient ~ /4~rl for the gauge field
A~. The model with g 4 0 describes thus, at least for
a certain range of parameters, a quantum Hall regime
for the vortices. Given that the Magnus force is the
dual of the Lorentz force, and based on the analogy with
effective gauge theories of the quantum Hall effect [2], we
expect such a regime to be realized in Josephson junction
arrays in the presence of n offset charges and P magnetic
fluxes per plaquette in the ratio @/n ~ O(1). Contrary
to the situation in the quantum Hall effect, this would be
a purely planar quantum Hall regime, with logarithmic
interactions [9].

The model with g 4 0 is related to the model with

g = 0 by a simple transformation of parameters:

B (Ae, g„;B, e, g) = B (Ae + —B„,Be; B = 0, e, g' =
1 il g /K

where ~g' —= d~d~ is the three-dimensional, Euclidean
Laplace operator on the lattice. Note also that the two

operators K~, and K~, are interchanged upon a summa-
tion by parts on the lattice.

In order to take into account the periodicity of the link
variables A~ and B~ we introduce four sets of integer
link variables and we posit the following lattice Euclidean
version of the Villain type [13]of (4):

23A~ 27B~ exp( —S),
~/~(n p'J(l p j

(m p),(kp)

g = y ", (B, + '. ..)+ —'(f. + ', , g„)
'

—i A~ + l~ + —B~ + m~

p B, + I +
2 p+ 2 ~p

where we have introduced the notation 23A~ —=

dA~(x) and we define the lattice dual field strengths
as F~ =—K~,A, and f~ —= K„,Bv e Due to the property
(6), the terms P, ~ F, and P„~f2 reproduce the famil-
iar lattice Maxwell action. The partition function (7) is
clearly invariant under shifts A~ ~ A~ + 27ri„/l and

B~ ~ B~ + 2~j~/l with integers i~ and j~, since these
can be reabsorbed by a redefinition of the integer link vari-
ables n~, m~, l~, and k~. With our normalizations, the
parameter 2~ plays the role of the charge unit in the
theory.

The integer link variables implementing the periodicity
have an important consequence. Indeed, using the Pois-
son summation formula [13] one recognizes easily that
the sum over [l~) enforces the constraint l22~K~, (B, +

Here, EJ = g' /27r has to be considered as a renor-
malized (by the external offset charges) Josephson cou-
pling. Correspondingly, the topological mass becomes
m = ~v~eg'/7r (one has to choose ilg ( ve in order to
avoid m ( 0).

In the described application of planar gauge theories to
the physics of Josephson junction arrays, the two Abelian
gauge symmetries of (2) have to be taken as compact;
i.e. , the gauge groups are U(1) rather than R. Indeed, the
independence of the two energy scales Ec = e /4 and

EJ = g /2vr2 is a consequence of the compactness of the
two gauge groups, which fixes the normalization of the
gauge fields. In the rest of this paper we shall investigate
the phase structure of a compact version of (2) formulated
on the lattice. Specifically, we shall study the crucial role
of the Euclidean topological excitations (instantons) due
to the compactness of the gauge groups [10].

To this end we introduce a cubic lattice with lattice
spacing l and lattice sites denoted by x. In addition to
the usual forward and backward lattice derivatives d~
and d~ [11],we introduce the forward and backward lat-

tice shift operators S„f(x) =—f(x + p, l) and S~f(x) =-

f(x —p, l), where p, denotes a unit vector in direction p, .
To each link ix, p, J of the lattice we assign two real gauge
fields denoted by A&(x) and B~(x). These are compact
variables defined on a circle of radius 2~/l: vr/l ( A~, —
B& ~ n/l. Following [12] and [11],we define the fol-
lowing two lattice Chem-Simons operators:

Kp v Sp ep eg vdcleK/Av 'Ep vd~ Segv e (5)
where there is no summation over equal indices p, and v.
These operators are gauge invariant, K~ d = d~K~, =
0, K~,d, = d~K~, = 0, and their product reproduces
the Euclidean lattice Maxwell operator,

K~ K „=K~ K, = —6~,V +d~d, , (6)
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2~m, /1) = 27rP~, P~ E Z for all values of B„and m~.
This has the immediate consequence of requiring a quanti-
zation condition on the parameter K: K = n/2, n E Z. In
the following we choose ~ = p E Z, so that the charge
unit is an integer multiple of 2, representing the charge of
the Cooper pairs of Josephson junction arrays. Moreover,
we shall specialize to the cases g = 0 and g = ~.

The exponential exp( —5) is invariant under gauge trans-
formations A~ ~ A~ + d~A only if A takes the values
A = (27r/2p)n, n E Z2~ at infinit. The same holds true
for gauge transformations B~ ~ B~ + d~A. This means
that both global gauge symmetries are actually broken
down to discrete Z2~ symmetries. This is a known phe-
nomenon in compact Chem-Simons theories [14].

We now rewrite (7) in a fashion that exposes explicitly

!

the topological configurations and their interactions. To

this end we decompose n~ and k„, as n~ —= lK„,l, + a„
k~ = lK~, m, + b„with a~ and b~ integers. Corre-
spondingly, the sum over all configurations (n~) and (k~)
in (7) can be replaced by a sum over all configura-
tions (a~) and (b„). By changing variables A~ ~ A~ +
(27r/l)l~ and B~ ~ B~ + (2n/l)m~ in the integration
and performing the sum over all configurations (l~) and

(m„), we can extend the integration domain of the vari-
ables A~ and B~ from [—vr/I, +sr/l]]to [—GG, +GG]. In a
last step we perform the Gaussian integration of the model
in the form Z = Zo Zt, z, where Zo is the partition func-
tion for the noncompact version of the model (describing
only the propagating modes) and Z,„z is the contribution
of the topological excitations:

Z„z = /exp g
(a„) x,p, —

ub. ) —i b~ 2 2 a, + b, !

4~p

m 6„, —d~d~
ig'2 m2 —V'2b~ b,

(8)

The stringlike topological excitations a~ and b~ orig-
inate as the "integer parts" of F~ and f~, respectively,
and have thus the obvious interpretation of magnetic
fiux strings and electric fiux strings. The strings can be
closed, in which case d~ a~ = 0 and d~ b~ = 0, or open,
in which case they terminate on monopole-antimonopole
pairs. In our Euclidean formalism, these monopoles de-
scribe tunneling events corresponding to the creation and
destruction of 2p localized charges or cruxes. Charges
and cruxes are indeed conserved only modulo 2p due to
the discrete global gauge symmetry Z2~.

The nature of the ground state of our original pla-
nar quantum model is thus determined by the three-
dimensional statistical mechanics of a coupled gas of
strings with "Hamiltonian'* PH given by StG& in (8). In
order to establish what are the possible ground states, we
shall use the same free energy arguments adopted in the
analyses of related three-dimensional models [15]. One
assigns a free energy

PF = (ml) G(mi) a + b)= 2' 77

le2 P
27T2+, (ml) G(ml) b —p, N, (9)

to a string of length L = lN carrying magnetic and
electric quantum numbers a and b Here, G(ml) i.s
the diagonal element of the lattice kernel G(x —y)

representing the inverse of the operator l2(m2 —V2). The
last term in (9) represents the entropy of the string: The
parameter p, is given roughly by p, = ln5, since at each
step the string can choose among five different directions.
In a dilute instanton approximation in which all values

a~, b~ ) 2 are neglected, it can be proved that the correct
value of p, is the same for open and closed strings [16].
In (9) we have neglected all subdominant functions of N,
like a lnN correction to the entropy and a constant term
due to the monopole contribution to the energy for open
strings. Moreover, we have neglected the imaginary term
in the action (8). This is justified self-consistently, since
the contribution of this term vanishes in all phases of the
model, as we now show.

Long strings with quantum numbers a and b condense
in the ground state if the coefficient of N in (9) is neg-
ative. When two or more condensates are possible, one
has to choose the one with the lowest free energy. Upon
defining the new parameter 6(ml) —= p, /(ml) G(ml), the
condensation condition describes thus the interior of an
ellipse with semiaxes le26/2~2 and lg' 8/2' on a non-
rectilinear lattice of integer magnetic and electric charges.
The phase diagram is thus obtained by investigating which
points of the integer lattice lie inside the ellipse as its
semiaxes (i.e. , the parameters in the theory) are varied.
We find it convenient to present the result in terms of the
parameters Im and e/g'. For g = ~ we obtain

Aim ) 1~
27T P

e/g' ( 1, oblique confinement (quantum Hall),
e/g' ) 1, confinement (insulating),

e/g' ( Blm/27rp, oblique confinement (quantum Hall),( 1 ~ - Blm/2np ( e/g' ( 2wp/Blm, Chem-Simons,
27TP .e/g' ) 27rp/Blm, confinement (insulating),
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In the oblique confinement phase [17] the ground state
consists of a dyonic condensate of strings carrying both
magnetic flux a = ~1 and electric charge 2pb = ~2p.
The confinement phase is characterized by a ground state
consisting of a condensate of magnetic flux strings. Fi-
nally, there is no condensation of topological excitations
in the Chem-Simons phase. This phase is the analog
of the Coulomb phase of the related three-dimensional
models [15]. However, in (2 + 1) dimensions, the prop-
agating modes are massive also in this phase due to the
Chem-Simons mechanism [8]: hence the name Chern-
Simons phase. In all these phases the product b(a +
rib/p) vanishes for the condensed strings. This is why
the imaginary term in (8) does not contribute.

The order parameters distinguishing the various phases
are the Wilson loop [10] expectation values for the two
gauge fields in the corresponding ground states. We
shall present the details of this computation elsewhere
[18]. Here we report only the results obtained in the
weak coupling limit ml « 1. These follow a general
rule [15], namely, the only nonconfined excitations carry
magnetic and electric quantum numbers in the same ratio
as in the condensate. Thus, both electric and magnetic
excitations are nonconfined in the Chem-Simons phase.
In the confinement phase, characterized by a magnetic
condensate, electric charges are linearly confined. In the
oblique confinement phase, the physical excitations carry
magnetic flux a = ~1 and electric charge 2pb = ~2p.
In analogy with the physics of the quantum Hall effect
[19], we identify this oblique confinement phase as a
quantum Hall regime for the vortices. The flux and
charge carrying excitations are the analogs of Laughlin's
fractional statistic quasiparticles [4]. The parameter 1/2p
plays thus the role of the filling fraction in this purely
planar quantum Hall regime.

For g = 0, the phase diagram has the same structure,
with the only difference being that the oblique confinement
phase turns into a Higgs, or superconducting, phase, char-
acterized by an electric condensate in the ground state and
confinement of magnetic fluxes. In this case, the structure
of the phase diagram reflects the self-duality of our model.

We conclude this paper by stressing that an insulating-
superconducting quantum phase transition is actually
observed experimentally in Josephson junction arrays at
extremely low temperatures [7]. Our results suggest that
the superconducting phase might turn into a quantum Hall
regime for the vortices in the presence of n offset charges
and P magnetic fiuxes per plaquette in the ratio @/n =
1/2p. Correspondingly, the insulating phase would turn
into a standard quantum Hall regime for the charges
fo«/cb = 1/2p. Within our formalism this can be
described by a bare Chem-Simons term for A~ in the
original action.
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