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Friedel Oscillations for Interacting Fermions in One Dimension
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We study Friedel oscillations in one-dimensional electron liquids for arbitrary electron-electron
interaction and arbitrary impurity strength. Explicit results for spinless as well as spin-2 electrons
are given. In the case of Luttinger-liquid leads, the Friedel oscillations decay as x g far away from
the impurity where g is the interaction constant. For a weak scatterer, a slower decay is found at
small-to-intermediate distances from the impurity, with a crossover to the asymptotic x g decay.

PACS numbers: 72.10.—d, 73.40.Gk

Quasi-one-dimensional (1D) interacting fermion sys-
tems have attracted renewed attention recently, partly due
to the technological relevance of such systems. They are
also appealing because of the existence of exact solutions
for simple models [1—9]. The striking non-Fermi-liquid
behavior of 1D electrons is most clearly exhibited in trans-
port properties, especially in the presence of impurities or
barriers [6]. Usually, the case of either a very weak or
an almost insulating barrier has been studied explicitly.
The crossover between these two regimes, however, has
rarely been looked at despite its importance for several
fundamental issues, e.g. , pinning of a Wigner crystal [10]
or charge density waves [11],breakdown of charging ef-
fects with increasing tunnel conductance [12],or transport
in 1D quantum wires or heterostructure channels [13]. In
this Letter, we discuss several aspects of this crossover,
in particular, properties of the screening cloud around the
impurity.

The presence of an impurity in a metal is known to
cause Friedel oscillations in the density profile due to the
sharp Fermi surface [14,15],

p(r) —cos(2kFr + 6)/r",

where kp is the Fermi vector, d the dimensionality, r the
distance from the impurity, and 6 a phase shift. This
result holds far away from the impurity and for a Fermi
liquid only, and in 1D the question arises of how Friedel
oscillations are affected by the presence of strong electron
correlations. As pointed out by Matveev, Yue, and
Glazman [7], for weakly interacting electrons in 1D, one
can understand the zero-voltage anomaly and power-law
temperature dependence of the nonlinear conductance [6]
in terms of electron backscattering by Friedel oscillations.
It is thus surprising how little attention has been devoted
to the modification of Friedel oscillations by strong
interactions.

We treat the 1D interacting electron liquid in the frame-
work of standard bosonization [3—6]. This approach is
appropriate for low temperatures where only excitations
near the Fermi surface are relevant. The electron cre-
ation operator for spin s = ~ at position x is expressed
in terms of the boson fields O~(x) and @~(x) (p, = p, o.),

which arise as linear combinations of spin-up and spin-
down fields,

t/t,t(x) —g exp(intkpx + $7r/2[O&(x) + sO (x)]))
n=+1

X exp[ig7r/2[@p(x) + s@ (x)]].

The boson fields obey equal-time commutation relations

[P„(x),O, (x')] = —(i/2)6„,sgn(x —x'),

and the canonical momentum for the 0~ field is H~ =

We are concerned with density distributions in the
presence of impurities or barriers. The bosonized form
of the density operator is [8]

p(x) = Q2/vr c3 O&(x) + cos[2kFx + Q2n Op(x)]
2kF

X cos[v'2~ O (x)] + const

X cos[4kpx + v'8' O~(x)], (2)

Hp = dxtII (x) + [B,Op(x)] }

dx dx' U(x —x') B,Op(x) 8, Op(x'),

(3)

where vF is the Fermi velocity and h = 1. The spin part
H is identical to the charge part H~ with no interaction

where the background charge po = 2kF/~ has been
omitted. The three terms in Eq. (2) are (1) the long-
wavelength contribution, (2) the 2kF charge density wave
part, and (3) the 4kF Wigner component [4,8]. The
Wigner component is not present in the spinless case,
since two rightmovers have to be flipped into leftmovers
simultaneously for this term to arise.

Assuming to be away from lattice or spin density wave
instabilities, and neglecting electron-electron backscatter-
ing for the moment, the clean system is described by
Ho =H + Hz with
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where the average is taken over Hb„. Since the impurity
influences 6)~ only at x = 0, we constrain 0~(x = 0) to
be equal to new fields, say, q~ = $2~ 0~(0). Represent-
ing these constraints by a Fourier functional integral, one
can integrate out all 0~(x) modes due to their Gaussian
nature. In contrast to previous treatments of this prob-
lem, we keep explicit information about the electron liq-
uid away from the barrier. The remaining auxiliary field
integrations coming from the above constraints are Gauss-
ian and hence also performed easily. In the end, one is
left with the nontrivial average over the q~ fields alone,
which are coupled to each other through H p.

Collecting together all terms, we obtain

Z = $(x, A~, V) Wp" (x). (6)
P =P, cT

The functions W~(x) are independent of the barrier height,
since they do not participate in the q average,

W~(x) = exp

where P = I/k~T and

F~~)(x) = vF
cos(kx)

cu2 + vFk2(1 + 2Ut, 6~p/rrvF)
(8)

Here, ~„=2vrn/p are the Matsubara frequencies and
Ug is the Fourier transformed electron-electron interaction

potential U and the p fields replaced by the o fields.
Here, U(x) is a (screened) Coulomb interaction, and we
will explicitly study a short-ranged potential (Luttinger
liquid) [5] and a 1/r long-ranged potential [8,9].

Let us now consider a scattering potential. Assuming
an essentially pointlike scatterer at x = 0, one finds

H; &
= V cos[42~ 0~(0)] cos[42~ 0 (0)].

Spin and charge parts are now coupled through this term
[6]. Actual computations using the bosonized model
Hb = Ho + H; &

necessitate introduction of a cutoff
parameter co, [16]. Increasing V/cu, from zero to infin-

ity corresponds to tuning the barrier from transmittance
one down to zero. Near zero transmittance, the weak-link
model used in Ref. [6] is reproduced by the instanton treat-
ment of Hb„,. One may also show [17]by direct compar-
ison with the exactly solvable Fano-Anderson model that
Hb„can reproduce the full crossover quantitatively, thus
validating Eq. (4) for arbitrary V/cu, . Although this com-
parison can be carried out only in the absence of Coulomb
interactions, it implies that a complete description of the
crossover is indeed possible using Hb„.

Friedel oscillations can be extracted from the generat-
ing functional

Z(x A ) = exp v 2' i P A~0~(x)

[18]. A Luttinger liquid is governed by the interaction
constants g = 1 and g~ = g ~ 1 [5,6]. In that case,
Eq. (8) becomes simply

Ff")(x) = ~gp, Igp, ~nxl
exp

I~nI vF

Finally, the quantity 8 in Eq. (6) is an average in q space;
all dependency on impurity properties is contained in this
factor. With Matsubara components q~, we find

iA~
~ CK0 F (x)(p)

B( XAp, V) = exp P qp n F. (0)

The q bracket stands for an average taking the action

p XX (p)

P
dr cos[q (r)]cos[q~(r)].

The first term is the standard inHuence functional [6].
From these equations (or generalizations with additional
0 fields at some other position x'), one may obtain all
desired information about density profiles and correlations
in the presence of an arbitrarily high barrier. The results
of Refs. [5,8] for the clean system (V = 0) are easily
recovered. Similar expressions incorporating the P fields
reproduce the results of Refs. [6,9].

Let us now consider the expectation value (p(x)).
From Eq. (6), one finds (0~(x)) = 0. The long-
wavelength part in p [first term in Eq. (2)] does not
feel the impurity since H; &

does not contain forward
scattering terms. However, Friedel oscillations follow for

1
the 2kF and (in the spin-2 case) for the 4kF component in

Eq. (2).
For a spinless Luttinger liquid, we obtain the Friedel

oscillation

(p(x))/pp = P(IxI, g, V) W(IxI, g) cos(2kFx), (9)

1
P(x, g, V) = — cos —P e " " 'q (10)

This function determines the amplitude of the Friedel
oscillation and hence the ability of the scatterer to pin
charge density waves.

In the following, we discuss the ground-state properties
of the Friedel oscillation (9) in some detail. From Eq. (7),
we find

W(x, g) = (1 + x/n) g,

where pp = kF/vr Evaluation of .S gives the pinning
function
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@=V(l+ '
) (12)

Within the SCHA, Eq. (10) is a Gaussian average, and
one finds

P(x, g, V) = exp[ —ge'+ '"Ft((x + n)/xo)] (13)

with the exponential integral Et(y) [21] and the crossover
scale

xo
n ~c

27rg A (14)

In the strong-scattering limit, rrV/cu, )) 1, Eq. (12)
yields II = V. In this limit, only small fluctuations
around the minima of the cosine potential are possible,
with interwell tunneling being forbidden by an exponen-
tially small WKB factor. Since xo is even smaller than
n, see Eq. (14), the term "crossover" is not meaningful in
this limit. Using asymptotic properties of Et(y), Eq. (13)
becomes for x » n

P gX0/X (15)

where n = vF/2gcu, is a microscopic length scale,
say, a lattice spacing. The properties of the pinning
function P can be studied using either numerically exact
quantum Monte Carlo (QMC) simulations or simple
approximations. For transmittance one (V = 0), the
"charge" q is free and P = 0. For zero transmittance
(V ~ ~), the potential V cosq locks q at odd multiples of
~, and P takes its maximal value, P = 1, for all x.

To estimate P for arbitrary V/cu, , we first discuss
a simple variational procedure based on a quadratic
trial Hamiltonian [self-consistent harmonic approximation
(SCHA)] [19,20]. Replacing the cosine term by a Gauss-
ian with frequency A, Feynman's variational principle
leads to the self-consistency equation

neighboring wells, it is readily seen that in general P
1 ~ Despite these shortcomings, the effective Gaussian
treatment indicates that for weak scatterers there is a
crossover, with a slower decay of the Friedel oscillation
at intermediate distances than the asymptotic x g decay.
In fact, Eq. (13) predicts P —xg for x « xo.

To investigate the weak-scattering limit further, we
have evaluated Eq. (10) in powers of V giving to lowest
order

~V
P(x, g, V) = yg

— + 6(V ),~c
(16)

with y„=(4g '/rr) B(1/2, g —1/2), where B(x,y) is
the Beta function [21]. This perturbative result is only
valid for g ) 1/2 (otherwise yg diverges). Furthermore,
since higher orders of the perturbation series grow faster
—x" ' ~) with n = 3, 5, . . . , the lowest-order result (16) is
only valid for x «xp, where xo is found to be given by
the SCHA crossover scale (14). Hence, for intermediate
distance from the barrier, the Friedel oscillation decays
slower than x g, namely, like x' g. As a consequence,
there is a nontrivial limit for the pinning function as
x~~andV~O.

The behavior of the pinning function for arbitrary
V/iu, and g can be computed by means of QMC
simulations. In Fig. 1, we show results for g = 2/3
and two (relatively small) barrier heights V. For
small-to-intermediate x, our data display a power law
P —x g with 62/3 = 0.24 ~ 0.03. This is in crude
accordance with the perturbational result 6g = 1 —g
valid for weak interactions. On the other hand, for
x» xo, the pinning function P is essentially constant,
and the asymptotic decay of the Friedel oscillation is
therefore —x g. A similar behavior is found at g =
1/3, where direct perturbation theory is inapplicable.
Figure 2 shows QMC results for the pinning function.
The small-to-intermediate x behavior is again a power

in accordance with our QMC results and a recent study of
Friedel oscillations by open boundary bosonization [22].

In the weak-scattering limit, rrV/cu, « 1, the pinning
function exhibits more structure. From Eq. (12) one has 0.5

fI = V(2rrgV/tu, )g/~'

which together with Eq. (14) implies that the crossover
scale goes to infinity as V ~ 0, namely, xo —V
For x» xo, SCHA always gives P = 1 according to
Eq. (15). This failure is due to the complete neglect
of interwell tunneling in the SCHA, as can be seen by
considering the x ~ ~ value of the pinning function (10),
P = —(cosq)~, where q is the time average value of the
imaginary-time path q(r). Without tunneling transitions q
is an odd multiple of ~ and one finds P = 1 as predicted
by SCHA. However, taking into account excursions to
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FIG. 1. QMC results for the pinning function P(y) at g =
2/3 and two barrier heights: V/ru, = 0.05 (solid curve) and
0.1 (dashed curve). The dimensionless space variable is y =
co,x/vF. Note the logarithmic scales.
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FIG. 2. QMC results for the pinning function P(y) at g =
1/3 and two barrier heights: V/ro, = 0.01 (solid curve) and
0.05 (dashed curve).

spinless case, backscattering is treated as an exchange
event of forward scattering and can be absorbed by a
redefinition of g. The asymptotic decay of the Friedel
oscillation is then always x ~. In the spin-2 case, based
on the renormalization group analysis [2], there are at
most weak logarithmic corrections.

To conclude, we have computed the Friedel oscillations
in an interacting 1D electron liquid. These results should
show up in NMR experiments or as strong quasi Bragg
peaks in x-ray scattering. They are also of relevance
for studies of quasi-one-dimensional conductors at low
doping concentrations, or the case of a magnetic impurity.

We wish to thank P. Riseborough, M. Sassetti, and
U. Weiss for useful discussions.

law, now with exponent 6i/3 = 0.22 ~ 0.03. This is
in crude accordance with the SCHA prediction 6g = g,
which holds for very strong interactions. Based on our
numerical data, the exponents 6g are independent of the
barrier height, while the region where the intermediate
decay is seen shrinks rapidly as V grows.

For spin-2 electrons, we find asymptotically a slightly
faster decay -x '+g / at zero temperature. This can be
rationalized by noticing that the additional spin channel
has g = 1 and the exponent —g in Eq. (9) has to be re-

1
placed by —(g + g~)/2. Remarkably, for spin-z elec-
trons, there is also a 4kF Friedel oscillation component

(p(x)) —cos(4kFx) x

which dominates over the 2k~ contribution for strong
enough correlations, g ( 1/3. Since 4kF corresponds to
the interparticle spacing, this suggests that for g ( 1/3
signatures of Wigner crystal behavior are induced by the
impurity.

Wigner crystal behavior has also been found by Schulz
[8] for the clean system with long-ranged 1/r correla-
tions. For 1/r interactions, the 4kF Friedel oscillation
decay is extremely slow. While the spin degrees of
freedom involve again the x ' factor suppressing the
2kj; component, the 4kF Friedel oscillations decay like
exp( —cvlnx), i.e. , slower than any power law. Effec-
tively, one will then only observe the 4kF component.
In the spinless case, the same quasi-long-ranged behavior
appears for the 2kF component already because the spin
channel is absent now.

Apparently, Friedel oscillations are always present in
1D for arbitrary electron-electron interaction. Moreover,
due to reduced screening in low dimensions, their decay
is always slower than the Fermi liquid 1/x prediction.
We wish to stress that inclusion of backscattering is
not expected to alter these findings substantially. In the
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