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We study statistical properties of a class of band random matrices which naturally appears in systems
of interacting particles. The local spectral density is shown to follow the Breit-Wigner distribution in
both localized and delocalized regimes with width independent of the band or system size. We analyze
the implications of this distribution to the inverse participation ratio, level spacing statistics, and the
problem of two interacting particles in a random potential.
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Intensive investigations of band random matrices
(BRM) have been done during the last few years [1,2].
Different regimes corresponding to localized and delo-
calized wave functions have been studied numerically
and analytically, and it has been shown that the transition
from one regime to another can be described by one
scaling function depending on the ratio of the localization
length in the infinite system I —b to the size of the
matrix W, where the parameter b determines the size
of the band 2b + 1. Similar types of matrices appear
in such physical systems as quasi-one-dimensional dis-
ordered wires and such models of quantum chaos such
as the kicked rotator that gives additional grounds for
investigation of BRM.

The above BRM can be also considered as a reasonable
model of one-particle localization in a disordered wire
of finite size [1,2]. However, recent investigations of
two interacting particles (TIP) in a random potential [3]
showed that another type of BRM naturally appears in
interacting systems. Indeed for interacting particles there
is one preferential basis which corresponds to eigenstates
without interaction. In this basis, the total Hamiltonian is
the sum of a diagonal matrix, with elements given by the
sum of one-particle energies, and a BRM, which describes
interaction induced transitions between eigenstates of
the noninteracting problem. The first investigations of
such superimposed BRM (SBRM) allowed one to find
the dependence of the localization length l, b on the
amplitude Wb of large fluctuations on the diagonal and to
obtain the localization length l, for two-particle coherent
propagation in a random potential on a distance much
larger than one-particle localization length l~ [3].

While from the TIP model it is clear that matrices
with preferential basis should describe interesting physical
effects in interacting systems, only a few investigations
in this direction have been done up to now [4,5]. In
this paper we investigate the properties of such matrices,
in particular, the local spectral density and the inverse
participation ratio (IPR). Because of the close connection

between the SBRM and the TIP problem, the obtained
results can also be used for the latter case.

The matrix we study is the sum of a random diagonal
matrix and a conventional BRM:

H„„i = r1„6„„+Q„„I/v'2b + 1,

with —Wb ~ g„( Wb, —1 ( („„(1 for tIn —n'~ (
b and g„„l = 0 elsewhere. The connection with the TIP
is given by b —

l~ and Wb —4~i~V/U in terms of
the interaction strength U and the one-particle energy
bandwidth 4V, l~ && 1. This matrix describes a one-
dimensional two-particle Anderson model, with on-site
interaction U, in the basis of noninteracting eigenstates.
In [3] it was shown that the eigenstates of (1) are
localized with localization length l,b = b /2Wb for 1 (
Wb « ~b. This leads to an enhancement of the length
of coherent TIP propagation l, = l, b/l~ —l~(U/V) /32
independent on the sign of interaction.

Our numerical investigations of SBRM (1) show that,
in addition to the standard exponentially localized form,
the eigenstates are also characterized by large ampli-
tude fluctuations of probability on nearby sites. A typi-
cal example of such an eigenstate is presented in Fig. 1.
The spike eigenstate structure is clearly noticeable. This
implies that only certain unperturbed states have strong
admixtures into the given eigenstate. Such eigenstate
structure is quite different from the case of conventional
BRM. For a better understanding of these spiked fluctua-
tions we study the local spectral density p~ introduced by
Wigner [6] and analyzed in BRM with a linearly growing
diagonal corresponding to conservative systems [7,8]:

~ (F- —~.) = g ly. ( ) I'&(~ —~.).
The function pz characterizes the average probability
P(~t/tq(n)~ ) = pter(F. —1,„) of eigenfunction t/tq(n) on
site n with energy E„=0„„,where A is the eigenvalue
index and n marks the original basis. Our numerical
investigations in a wide range of parameters (20 ~ b (
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FIG. 1. Localized eigenfunction of a SBRM with Wb =
7, b = 100, and N = 2001. The solid line indicates the
exponential localization with l, b = 171 in agreement with
results obtained in [3], Eq. (3).

2000, 201 ( N ( 4001, and 1.5 ( Wb ( 40) in both
localized (l,b « N) and delocalized (l, b » N) regimes
show (see Fig. 2) that ply is well described by the well-
known Breit-Wigner distribution p~ = p~w.
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FIG. 2. Local spectral density which determines the average
probability on a given site P(if'(n)i2) =

pii (E —E„)for b =
100, Wb 5, N = 2=01 (triangles, 20 realizations of disorder),
and N = 2001 (squares, 2 realizations of disorder). The solid
line gives Breit-Wigner distribution (3) with I' = 0.21. The
inset shows the dependence of I on Wb . points are numerical
data (N = 1001,b = 100); straight line is theory (3).

where I is the distribution width. This distribution re-
mains valid in localized and delocalized regimes under
the condition that I is much less than the energy width
6E = 1 of H„„at Wb = 0. Usually the distribution pBw
appears in such physical systems as nuclei and complex
atoms [8], where due to energy conservation the diago-
nal term g„grows linearly with n that corresponds to a
finite level density pE. In this case the width is I
2~pE(H„~„) [6,8]. In our case for Wb && 1 all eigenen-
ergies are homogeneously distributed in the finite interval

[—Wb, Wb], and for full matrices with b = N/2 we can
use the above expression with pF. = N/2Wb, which gives
I in (3). For b « N according to [3] one should replace
pE by the density of directly coupled states p, = b/Wb
that leads to the same expression for I . The theoretical
formula for I, independent on b and N, is in a good agree-
ment with our numerical data (Fig. 2). The independence
of I on b and N makes our case quite different from the
case of full matrix (1) studied before in [9].

For Wb » 1 the width of the Breit-Wigner peak is
small and therefore according to (3) the probability on
nearby levels is a strongly fluctuating spiked function.
This spike structure of eigenfunctions can be character-
ized by the IPR sz = (g„ if'(n)i") ', which counts the
number of spikes independently on the distance between
them. In the case of full matrices with b = N/2 the
number of spikes can be estimated as the number of
states in the interval I that gives the average value of
IPR g = (1/sq) ' —Ppi = N/2Wb. The same esti-
mate can be also used in the delocalized regime I,b » N
with b « N. Of course, this estimate is valid only when
the number of states in the width I is much larger than 1,
that implies $ » 1 or Wb « ~N.

The numerical results for the dependence of IPR on Wb
in the delocalized regime are presented in Fig. 3. They
demonstrate that for sufficiently large full matrices (N =
4001) this dependence approaches the above estimate.
However, the convergence is rather slow so that for
smaller N values one has approximately s —N/Wb,
where the exponent n slowly changes with ¹ For
example, a = 1.7 for N = 2001. We attribute this very
slow approach to the asymptotic value of n = 2 to the
quite restricted range of Wb variation. Indeed on one side
the width of the Breit-Wigner peak should not exceed
the width of the energy band for Wb = 0 that gives
Wb » 1. On the other side one should have Wb « ~N.
Another restriction appears for band matrices with b (
N/2, namely, l, b » N. The data for this case (Fig. 3,
full squares) show that for not very large Wb the IPR is
close to the regime of full matrices, while for large Wb
one enters the localized regime l, b « N, which should
be studied separately.

It is interesting to note that in the delocalized regime
even for Wb » 1 many levels are coupled by interaction
if p~l' = N/2Wb && 1. Therefore, one would expect2

that for Wb & Wb' = (N/2)'i2 the level spacing statistics
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FIG. 3. IPR $ normalized with its limit value for the GOE
case N/3 vs Wb in the delocalized regime for N = 2001,
b = 300 (full squares), and full matrices with N = 251 (open
squares), N = 501 (open triangles), N = 1001 (X), N = 2001
(full triangles), and N = 4001 (full circles). Dashed line shows
the fit for full circles with a = 1.75 ~ 0.03; solid lines shows
theoretical slope n = 2.

P (s) will be the same as in the case of Gaussian
orthogonal ensemble (GOE) [10]. These expectations are
not so evident, since the spiked structure of eigenfunctions
apparently should lead to a decrease of overlapping
matrix elements between eigenfunctions. However, our
numerical results for matrices with N ~ 8000 show that
P(s) remains close to GOE for 1 & Wb ( Wq'. They
are also in agreement with the numerical results [11] for
full matrices of smaller sizes showing that the transition
border in Wb between Poisson and GOE statistics scales
as N'/ . The question about other statistical properties of
levels in the regime 1 ~ Wb ( 6"b' remains open.

For the localized regime in the above estimate of g one
should replace N by l, b, since only levels in the interval
of one localization length can contribute to the IPR. This
gives the expression

$ = l,b/2' = b /4Wb, p = 4, (4)
which is valid for s » 1 (1 « Wb « ~b). The last
condition together with l, b « N gives strong restrictions
for the numerical simulations (1 « Wb « N' )

Our results for this localized case are presented in Fig. 4.
The data can be empirically fitted by g —b /Wb with

P = 3, which differs from the theoretical value P =
4. We attribute this difference to the fact that we are
not far enough in the asymptotic regime of large b and
W~. Indeed for Wb ~ b'~ one enters in the perturbative
regime, and the deviations from a power law become
evident. We also checked that the probability distribution
P(~pq(n)~ ) is proportional to pnw that gives additional
grounds for the theoretical power P = 4. However, the

FIG. 4. Dependence of s/b2 on Wb in localized regime:
N = 2001, b = 50 (full squares), and b = 80 (open squares);
N = 4001, b = 50 (full circles), and b = 100 (open circles).
Dashed line shows the slope from fit for open circles (P =
3.0 ~ 0.1) and solid line indicates theoretical slope P = 4.

simulations with large enough values of parameters b, 8'b
require too large matrix sizes being beyond our numerical
abilities. The numerically found value P & 2 implies
that the number of peaks is smaller than the localization
length l, b = b /2Wb, which determines the asymptotic
exponential decay of the eigenstates. It would be desirable
to have a more rigorous theoretical derivation of the IPR
dependence on parameters in the localized regime.

The above results show that the SBRM (1) has many
features similar to the photonic localization in a molecular
quasicontinuum [12]as it was remarked in [3]. According
to this analogy, the number of levels in one-photon
transition (size) is of the order b, and the density of
coupled states is b/2Wb. However, in the photonic model
the levels are ordered in energy in a growing way that
leads to a chain of equidistant Breit-Wigner peaks in an
eigenstate [12]. For the SBRM (1) all levels are mixed in
the energetic interval and the Breit-Wigner peak is hidden.

Let us now discuss the consequences of the result (4)
for the TIP model. According to the relation between
the parameters of SBRM and TIP given above, we obtain
from (4) the expression for the IPR s, in the TIP model:

$, —(U/V) l) & 1. (5)

This result can be also derived directly from the density
of states inside the localization length interval l, (p~-
l~l, /V) and the transition rate I", —Uz/Vl~ obtained
in [3]. Indeed, the number of levels in the Breit-
Wigner peak is I', p~ = s, that gives (5). This result
shows that the number of noninteracting eigenstates

contributing in the eigenfunction is quite large for
U —V, while for (U/V) l ~ && 1 this number is of the
order of 1. However, the value of g, at U —V is
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much less than the number of unperturbed states AN
contributing to the TIP eigenfunction in the unperturbed
lattice basis. This number determines the IPR g,„=
b, N = I, /t —lt. The difference between g, and s
shows that the noninteracting eigenbasis represents the
real eigenfunctions in a much better way. It also stresses
the fact that the IPR value is not basis invariant.

From the difference between g, and $ „ it is pos-
sible to conclude that the coherent propagation of TIP
goes by rare jumps of size l& between the states with

approximately constant sums of noninteracting energies
E, = t „+e„. The distribution over F, should have the
Breit-Wigner form with the width I,. The length of prop-
agation by such jumps is l, —

l& && l&. Because of this
hidden Breit-Wigner distribution the IPR g, in the basis
of noninteracting eigenstates is proportional to l& instead
of "naive" l~. For the case of TIP with M transverse
channels one should replace lt in (5) by Mlt with lt ~ M
being one-particle localization length.

If one-particle motion is ergodic in a d-dimensional sys-
tem of size L ( l~, then its eigenfunction contains about
N~ = L" components. The matrix element of interaction

3/2
is then U, —U/Nt [3], the density of coupled states

p, —Nt /V and the Breit-Wigner width I', —U, p, —
U /Nt V for U & V is less than one-particle level spac-
ing At = V/Nt. Therefore, it is possible that a concept
of pairs formed by TIP can be useful even in the er-
godic samples with L & It. In some sense, for b.2 «
I, « At, where Az = V/N, is two-particle level spac-2

ing, one can at first average over fast one-particle motion
and after that analyze the slow pair dynamics with typical
time scale 1/I, . In the ergodic regime L & lt the IPR
is se, —I,p, —Nt(U/V) « Nt, and according to the
above discussed properties of P(s) in SBRM and the re-
sult [11] the GOE statistics for TIP should be observed
for g, ) 1. For L » lt the strong enhancement of inter-
action [p, I', —t t (U/V) » 1] leads to delocalization of
the TIP pairs in d ~ 3 below one-particle Anderson transi-
tion when noninteracting particles are well localized [13].
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