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Comment on ‘““Decoherence, Chaos, and the Second
Law”

In a recent paper [1] Zurek and Paz have presented a
theory for quantum decoherence and for the correspon-
dence between quantum and classical dynamics in which
the coupling of the quantum system to a (random) en-
vironment plays a crucial role. The main purpose of
this Comment is to point out that, in order to reconcile
quantum dynamics with classical Hamiltonian chaos, the
interaction with the environment, being sufficient, is not
necessary at all, nor is it satisfactory from the physical
point of view. Namely, both quantum decoherence and
the transition to classical chaos, including sensitive depen-
dence on initial conditions, are quite possible, and typical,
in the quasiclassical region, as # — 0, for a purely dy-
namical, classically chaotic, quantum system. As a mat-
ter of fact, this is an important recent achievement in the
studies of so-called dynamical chaos (see, e.g., Ref. [2]).

The transition proceeds on some characteristic time
scales of quantum dynamics. The shortest one—the
random time scale t,—is given by the estimate

Aty ~ Ing, D
where A is the classical Lyapunov exponent, and g =
I/h — o stands for the dimensionless quasiclassical pa-
rameter (with a characteristic action /). This time scale
was discovered and explained in Ref. [3], and it is essen-
tially identical to estimate (2) in Ref. [1]. The quantum
dynamics here is close to the classical one. However, as
time grows, such a correspondence is eventually always
destroyed (see, e.g., Refs. [4,5]).

We would like to emphasize that as to the dynamical
correspondence, external noise considered in Ref. [1]
does not help, since the noise indeed suppresses the
squeezing which, on the other hand, is a typical feature
of classical chaotic behavior. Concerning instead the
statistical description, external noise is not necessary
and the simplest (and standard) way to get rid of the
dynamical fine structure (classical or quantum) is by
making use of a coarse-grained phase-space density, e.g.,
of the Husimi distribution instead of the Wigner function.

Notice that the scale ¢, grows indefinitely as # — 0,
thus providing the transition to classical behavior in the
double (z,g — ) conditional (z/t, = const) limit. We
would like to stress also that the permanent entropy
growth (H — const # 0) found in Ref. [1] is due to
the specific model used which is classically unstable but
nonchaotic. Indeed, in the chaotic case, due to quantum
diffusion, the entropy growth rate eventually decays:

H~1/t, <t <tg. )

Besides the random time scale ¢,, there is another, much
longer and more important time scale—the relaxation
time scale tg,

Ip ~ qp’ (3)

350 0031-9007/95/75(2)/350(1)$06.00

on which the quantum diffusion and relaxation remain
close to the classical behavior even though the former
are dynamically stable [6]. Here p is a model-dependent
parameter (for example, p = 2 for the popular kicked-
rotator model [7]). It is important to realize that the
very existence of quantum diffusion, even on a finite time
scale (3), as was found in the first numerical experiments
[7], implies both dynamical decoherence and correlation
decay. Notice that decoherence arises as a result of the
standard quantum averaging over any chaotic pure state.

The external noise modifies, of course, quantum dynam-
ics, and it can provide classical statistical behavior as was
found also in Ref. [8]. However, the existence of the two
time scales ¢, and tg allows a purely dynamical quasiclas-
sical transition and therefore allows one to get rid of the un-
satisfactory inclusion into the theory of the external noise.

In conclusion, it may be worth mentioning that the
theory of dynamical chaos can be successfully applied
also to so-called mesoscopic phenomenon with mixed
classical-quantum behavior [9].
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