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Yield Strength of Diamond
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The temperature dependence of the yield stress of diamond is predicted from existing data of crystals
with diamond or diamondlike structure: silicon, germanium, and silicon carbide.
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Diamond is the hardest material, but little is known
about its plastic properties such as the yield strength [1].
For example, it is not well known at what temperature it
can be deformed on a macroscopic scale. The highly co-
valent crystals Si, Ge, and SiC are hard to deform at room
temperature and deformable only above several hundred
degrees Celsius [2—8]. The temperature dependences of
the critical shear stresses 7, for (111)(110)slip in Si
[4,5], Ge [7], and for [0001)(1120) slip in 6H-SiC [8] are
shown in Fig. 1. They were measured at strain rates of
the order of 10 s '. Under atmospheric pressure plas-
tic deformation of Si is possible at T ) 700 K where ~,
is lower than 100 MPa [2—4]. Under confining pressure
Castaing et al. [5] deformed Si down to 500 K and ob-
served a steep increase of ~, to about 1 GPa. Germanium
[7] behaves similarly. The hexagonal polytype 6H-SiC
has a layer structure consistent with the zinc-blende struc-
ture. Slip occurs on the (0001)(1120)basal slip system
[8], which is equivalent to the f1 1 1)(110) slip system in
cubic zinc-blende.

The 7.,(T) relations of the three crystals are replotted
in Fig. 2 in reduced units, r, /G vs kT/Gb3, where k is
the Boltzmann constant, b is the length of the Burgers
vector of perfect dislocations, and G is the shear modulus,
which is taken to be G = (c~~ —c~q + c4q)/3 for Si and
Ge, and G = c44 for 6H-SiC. The values of b and G
obtained from the elastic constants c;~ [9—12] are given
in Table I, including the values for diamond.

The strain rate ~ obeys a rate equation of Arrhenius

type,

Peierls process AH(r) is generally expressed in the form

AH(r) = Gb f(r/rp), (3)

where rp is the Peierls stress and the function f represents
the details of the process; kink pair formation of kink
migration in dissociated partials or in nondissociated
perfect dislocations. Combining Eqs. (2) and (3),
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Figure 2 implies that the processes determining
f(r/rp) in the three crystals are the same with the same
magnitude of rp/G and constant cr. Because of their
covalency, the Si, Ge, and 6H-SiC data coincide better
than the bcc ones [15—17], which scatter by a factor of
2. This fact indicates homologous behavior and suggests
that diamond conforms to it as well. In Si and Ge glide
dislocations are dissociated into Shockley partials [14].
Dislocations in diamond are dissociated in the same way

= ~o exp[ AH(r)/kT], —

where po is insensitive to r and T, and AH(r) is the
activation energy of the process determining the mobility
of the dislocations under the applied stress ~. At constant
~ Eq. (1) gives the relation between r and T as
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with a constant o. , which is usually about 25. There
is no doubt that the dislocation mobility in the crystals
under investigation is determined by overcoming a Peierls
potential due to the lattice periodicity [13,14]. For the
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FIG. 1. Temperature dependence of the critical shear stress
(T) for (ill)(. 110) slip in Si [4,5], Ge [7], and for basal

(0001)(1120) slip in 6H-SiC [8].
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FIG. 2. r, (T) of Si, Ge, and 6H-SiC in reduced scales. The
scaling of r, /G is taken as (r, /G)'t~ so as .to enlarge the low
stress region and shorten the high stress region. Broken lines
are the data of bcc transition metals u-Fe [13], Nb [14], and
Mo [15].

TABLE I. The length of the Burgers vector b and the shear
modulus G as defined in the text.

(nm)
(GPa)

Si

0.384
60.5

0.400
48.9

60-SiC

0.308
192

Diamond

0.252
510

[18]. Also in SiC they should be largely dissociated
because it has a low stacking fault energy consistent with
the existence of polytypes [19]. Thus we conclude that in
all these crystals dislocation mobility is controlled by the
same intrinsic process and the r, /G vs kT/Gb relation
of diamond should obey the universal curve in Fig. 2.
With the values of b for the (111)(110)slip system and
G given in Table I and assuming the same value of n,
we obtain for diamond the r, (T) of Fig. 3. Of course,
our results refer to the intrinsic deformation process of
type II diamond (without precipitated second phase) and
not to type I diamond (where nitrogen platelets cause
precipitation hardening). We consider the intrinsic yield
stress, without work hardening of diamond.

In three point bending of type II diamond plates at
2073 K, Evans and Wild [20] detected appreciable plastic
bending above a resolved shear stress of 0.5 GPa. Their
data point is shown in Fig. 3. Similar experiments
were carried out by Trefilov, Milman, and Grigoriev
[21]. Although there is some inconsistency between their
bending and indentation tests, they nevertheless indicate

FIG. 3. Predicted temperature dependence of the critical shear
stress for (I 1 lj(110) slip in diamond. Evans and Wild [20]
detected plastic bending of type II diamond platelets at stresses
higher than the point X.

the onset of plastic deformation around 2000 K at stresses
of about 1 GPa, the range predicted by us.

One concludes that the deformation processes active
in diamond are the same as those in the homologous
semiconductors Si, Ge, and SiC.
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