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Almost Any Quantum Logic Gate is Universal
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It is shown that if one can apply some Hamiltonian repeatedly to a few variables at a time one can
in general effect any desired unitary time evolution on an arbitrarily large number of variables. As
a result, almost any quantum logic gate with two or more inputs is computationally universal in that
copies of the gate can be "wired together" to effect any desired logic circuit, and to perform any desired
unitary transformation on a set of quantum variables.

PACS numbers: 89.70.+c

Suppose that an experimenter can act on two or more
quantum variables by "turning on' a given Hamiltonian
for a controlled period of time. What can she do with
this capability? In this paper, it is shown that by acting
with the Hamiltonian first on some variables and then on
others the experimenter can in general effect any desired
unitary transformation on an arbitrarily large number of
variables. This result implies in turn that almost any
quantum logic gate is universal: Quantum devices that
perform some unitary operation on their input variables
can be "wired together" to effect any desired unitary
transformation on an arbitrary set of inputs. In particular,
almost any quantum logic gate can be used to construct a
quantum-mechanical computer.

Quantum information processing. —The discrete na-
ture of quantum-mechanical variables makes them natural
quantities for registering information. A bit of informa-
tion can be registered by a spin-1/2 particle, with spin up
corresponding to 1 and spin down to 0, or by the polariza-
tion of a photon, with clockwise polarization correspond-
ing to 1 and counterclockwise to 0, or by an electron in a
hydrogen atom, with the first excited state corresponding
to 1 and the ground state to 0. One can not only register
information on such a quantum bit, but also process it: For
example, one can "fIip" the bit registered by an electron's
spin by putting the electron in a magnetic field and rotat-
ing the spin by ~ using magnetic resonance techniques.

A quantum computer is a device that stores and pro-
cesses information on quantum variables. Quantum com-
puters differ from classical computers in that they can
maintain quantum-mechanical coherence: an electron can
be in a coherent superposition of spin up and spin down,
and a quantum bit can be in a coherent superposition of
0 and 1, but a capacitor in an integrated circuit cannot
be in a coherent superposition of charged and uncharged.
The idea of quantum computation was first introduced by
Benioff [1], and further developed by Feynman [2]; com-
puters that exploit quantum coherence were introduced by
Deutsch [3], who also introduced the notion of a quan-
tum logic gate [4]; error generation and correction were
discussed by Peres [5] and Zurek [6]; and quantum cel-
lular automata computers were discussed by Margolus

[7]. These contributions considered quantum computers
in the abstract. During the same period, Landauer [8]
produced an extensive critique of the difficulties involved
in actually realizing quantum computers. In recent years,
Deutsch and Jozsa [9] showed that there exist problems
that can be solved more rapidly on quantum than on clas-
sical computers, and Shor [10] showed that large numbers
could be factored in polynomial time on a quantum com-
puter. In parallel, progress has been made towards realis-
tic designs for quantum computers [11],and difficulties in
maintaining quantum coherence have been explored [12].
The properties of quantum computers considered in the
abstract continue to be developed [13—19].

Whether full-blown quantum computation can be real-
ized or not, quantum information-processing techniques
could prove useful to physicists who wish to realize and
test the properties of complicated quantum states. Even if
one cannot maintain hundreds or thousands of quantum bits
in a coherent superposition, the ability to store, manipulate,
and read two or three, or four or five bits would allow one
to explore a variety of quantum phenomena [20], such as
Einstein-Podolsky-Rosen states [21], Greenberger-Horne-
Zeilinger states [22], and quantum teleportation [23]. In
this paper, it is shown that almost any interaction be-
tween quantum-mechanical variables can in principle be
exploited to effect any desired unitary evolution for the
variables. In particular, almost any interaction between
quantum-mechanical variables can be used to create a uni-
versal quantum logic gate. A practical example of such a
universal interaction is the nonlinear interaction between
light and matter in small-cavity quantum electrodynamics
[24—27].

Quantum logic gates —A quantum lo. gic gate is an
input-output device whose inputs and outputs are discrete
quantum variables such as spins. The action of such
a gate on its inputs is described by a unitary operator
U that takes the input variables from a state ~P) to a
state ~i/t') = U~P) (the question of dissipative, nonunitary
quantum gates will not be addressed here). In analogy
with classical logic gates, quantum gates can be wired
together to form a quantum circuit, where a "wire" is a
device that takes an output variable from one gate and
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moves it to the input of another gate. (A quantum wire
is itself a nontrivial device that may be difficult to realize
[11].) A quantum gate is said to be universal if copies
of it can be wired together to make circuits to evaluate
any desired classical logic function (that is, a quantum
universal gate is also a classical universal gate), and
to enact any desired unitary transformation on a set of
quantum variables.

The concept of the quantum logic gate was first intro-
duced by Deutsch [4], who showed that a "controlled-
controlled rotation" gate was universal: This gate has three
two-state or Q-bit inputs (e.g. , spin-z particles) and three
Q-bit outputs; the first two inputs go through unchanged,
while the third bit is rotated by an angle that is irrationally
related to ~ if and only if the first two inputs are 1. Re-
peated application of this gate allows one to come as close
as one wants to a controlled-controlled NOT gate that Hips
the third input if and only if the first two inputs are 1.
Controlled-controlled NOT is a classical universal gate,
capable of performing NOT, AND, and COPY operations
(copies of any gate that can perform these operations can
be wired together to realize any desired logical function).
Deutsch also showed that copies of this gate can be wired
together to give a circuit that comes as close as desired to
evaluating any desired unitary transformation on a set of
Q-bit variables. More recently, DiVincenzo [14] showed
that a set of two Q-bit logic gates is adequate for universal
computation, and Barenco [18]and Sleator and Weinfurter
[19]independently showed that a "controlled rotation" gate
is in and of itself a quantum universal gate: This gate leaves
its first input unchanged, and rotates the second input by
an angle and multiplies it by a phase if and only if the
first input is 1 (Fig. 1).

In the same paper in which Deutsch proposed quantum
logic gates as a way of performing quantum computation,
he conjectured that most quantum logic gates with three or
more binary inputs are universal. Here, a stronger result
is proved.

Theorem. Almost any quantum logic gate with two or
more inputs (not necessarily binary) is universal.

The proof of this theorem follows from a more general
fact; a more detailed proof will be given elsewhere. Let a
set of quantum variables evolve according to a Hamiltonian
A on an n-dimensional Hilbert space. Suppose that an
experimental physicist can "turn on" and "turn off" a
different Hamiltonian B over a time t that she is able to
control. All the physicist can do is let the variables evolve
according to A for a time t&, then apply B for a time t2,
then let them evolve according to A for time t3, then apply
B for a time t4, etc. , a process that corresponds to unitary
operators of the form

i Bt4 iAt3 i Bt2 i Atl

Which U can be created by such an experiment?
Answer: any U = e' ', where L is a member of the

algebra 5 generated from A and B through commutation.

In: Out:

(a)

Out:

This algebra is the set of Hermitian matrices, regarded as
vectors, spanned by A, B, i[A, B], [A, [A, B]], . . . . If the
repertoire of interactions available to the experimentalist
includes more than one Hamiltonian, B, C, . . . , then any
U = e' ' can be created, where L belongs to the algebra
generated by [A, B,C, . . . , J.

This result can be demonstrated in a number of ways.
First, one can build up transformations infinitesimally,
using the fact that

lag / —lAQ / iBQ / id' /
)

/A. B1

tt ~oo

Any U = e'~t can be built up in this fashion, but the
number of transformations, and the time required to
enact them, can be arbitrarily large. The second way
of constructing transformations is noninfinitesimal: As
each additional transformation is added to Eq. (1), the
dimension of the submanifold of transformations that can
be reached by varying t&, t2. . . , goes up by 1, until it
reaches the dimension of 5, at which point additional
transformations no longer increase the dimension of the
space of reachable transformations. The submanifold of
transformations reachable in dime steps is a nonzero
measure subspace of the space of transformations of the
form U = e' '. If 2 has finite dimension, this space is
compact: As a result, at most, a number of transformations
proportional to the number of generators of L is required
to reach any desired transformation in the space.

(b)

FIG. l. (a) A quantum-mechanical controlled rotation gate. If
the first input is I, the second input is rotated by P about the
z axis and multiplied by a phase. When @/vr is irrational,
this gate is a quantum universal logic gate. (b) Construction of
a Greenberger-Horne-Zeilinger state using controlled rotation
gates. Controlled rotation gates can be wired together to create
any desired quantum state, and to perform any desired unitary
transformation. Controlled rotation gates suffice to construct a
quantum computer.
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Suppose that the experimenter is presented with two
n X n HamiltoniansA and B:What does 2 look like? The
only way that 2 can fail to be the entire space of n X n

Hermitian matrices is for both e'"' and e' ' to lie in an n-
dimensional unitary representation of some Lie group other
than U(n) W. hich Lie groups have such representations
depends on n, but for any n there are a finite number of
inequivalent representations for such groups, each one of
whose algebras have fewer than n generators [28—30].
Assume that A is not proportional to the identity matrix,
and work in a basis in which A is diagonal; for A and B to
fall in a representation of a Lie group other than U(n), B
must lie on some submanifold of Hermitian matrices of
dimension equal to the number of generators for the group.
This submanifold has dimension less than n [for SU(n),
for example, the submanifold has dimension n —1], and
is of measure zero in the n -dimensional manifold of all
n X n Hermitian matrices.

That is, for all n && n matrices A and B, except a
set of measure zero, the algebra generated by A and B
is the entire space of n X n Hermitian matrices. (The
analogous statement for the rotation group is that any
rotation can be generated by repeated application of
rotations about two randomly selected axes. ) The number
of terms in the product in Eq. (1) needed to generate an
arbitrary U is on the order of the number of generators
for the algebra, in this case n . By turning on and turning
off a single Hamiltonian, the experimenter can in general
effect any desired unitary transformation.

This proof is an "existence" proof, but the "construc-
tion" problem is only that of constructing a controlled-
rotation gate, since Refs. [4,14,18,19] show how such a
gate can be used to construct a quantum computer. Once
such a gate has been realized, the "wiring diagram" by
which copies of the gate are combined to realize quantum
computation is independent of the form of the interactions
used to realize the gate.

Now suppose that the experimenter can only apply
each different Hamiltonian A, B for a predetermined time
interval t~, t~. That is, the experimenter can generate
unitary operators of the form

U = . Uq'U~'Uq'U (3)
where U~ = e'"'", U~ = e' ", for fixed t~, tp, and I;
are integers. Which U can be realized now? In fact,
by applying sequences of Hamiltonians for predetermined
time intervals, one can get arbitrarily close to any of the
U that one could create before using continuous times.
The reason is simple: As long as the eigenvalues of U~
have phases that are irrationally related to ~, then for all
t there exist some m such that ( ) U~ —e'"'

) ( ( e, where
the norm is the trace norm. Here I is of the order of e
Similarly for U~. That is, each of the terms in the product
in Eq. (1) can be approximated to accuracy e by iterating
one of the operations a number of times on the order of
e ". Since the iterations can be chosen so that the errors

tend to cancel in the product of Eq. (3), the total number
of iterations in Eq. (3) required to enact an arbitrary U to
accuracy e is on the order of n e

Now, let U~ correspond to the action of some arbitrary
gate on 8 inputs, and let W be the unitary operator
corresponding to switching two of the gate's inputs. The
set of such U~, Uz = UqW that do not obey the criteria
of the previous paragraph is of measure zero, and U~
and 8' can be iterated to enact a universal gate such as
a controlled-rotation gate on two of the inputs. But a
gate that can enact a universal gate is itself universal.
This proves the theorem. By doing only two things, but
by doing them cleverly, the experimenter can effect any
desired unitary transformation on the input variables.

This universality can be proved directly (though non-
constructively). Almost any Z-input quantum logic gate
can be "wired together" with copies of itself to effect
any desired unitary transformation on W input variables,
where N can be arbitrarily large. Let U~ give the action
of the gate on 8 of the X inputs, and let W give the action
of the permutation vr (a "rewiring*') on the input variables.
In general, the algebra generated by (logUA, logU~W )
over all permutations ~ is the entire set of Hermitian ma-
trices on the Hilbert space MJv of the input variables, and
so by the same proof as above, Uz and W may be iter-
ated to get arbitrarily close to any desired unitary opera-
tion on B'av. That is, the experimenter can perform any
desired unitary operation not only on 4 inputs, but on an
arbitrary number of inputs. The total number of iterations
required to get within e of the desired unitary transforma-
tion is on the order of [Dim(A~)] e ", where n is the
dimension of the input space of the gate. QED.

E'xample (31'.—Suppose that the experimenter can
arrange an interaction between two spins or photon
polarizations that takes the state ~00) ~00), ~01)
e'+'~01), [10)~ e'~'[10), and (11)~ e' '~11) over time
t, for some spin or polarization basis ~0), ~l) for each
particle. If, in addition, the experimenter can perform
phase shifts and rotations on each individual spin or pho-
ton polarization, then the theorem implies that this inter-
action suffices to effect universal quantum computation
if and only if ~ + g 4 cu (mod27r); that is, any nonlin-
ear phase shift suffices to allow computation. In fact, it
can be shown that a single application of this interaction,
together with phase shifts and rotations, allows the con-
struction of a universal controlled-rotation gate. Small
cavity quantum electrodynamics afford strongly nonlinear
light-matter interactions of this form, and might be used
to effect quantum logic and to create novel multiparticle
quantum states [24—27].

Conclusion. —An experimenter who performs a single
operation accurately and repeatedly on a few variables at
a time can in principle accomplish any desired unitary
transformation on an arbitrary number of variables. The
demonstration is straightforward: If one can repeatedly
apply a Hamiltonian to a system, then as long as the
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algebra generated by the applied Hamiltonian and the
system's unperturbed Hamiltonian via commutation only
closes on the entire space of Hamiltonians for the system,
one can effect any desired unitary transformation on the
system. As a result, almost any quantum logic gate is
universal. A variety of experimentally realizable systems
are reasonable candidates for universal quantum logic
gates: Essentially, any nontrivial interaction between
quantum variables will do. If realized, quantum logic
gates could be used to create previously unobserved
multiparticle states, and to effect quantum computation.

The author would like to thank Jeff Kimble, Jon
Preskill, and David DiVincenzo for helpful discussions,
and Michael Arbib and the Center for Neural, Informa-
tional, and Behavioral Sciences at USC for their hospi-
tality during the composition of this paper.

Note added. —After the submission of this paper, a
similar result, independently derived, was submitted by D.
Deutsch, A. Barenco, and A. Ekert to the Proceedings of
the Royal Society, under the title Universality in Quantum
Computation.
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