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Breaking of Rotational Symmetry during Decomposition of Elastically Anisotropic Alloys
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The coarsening of a two-phase structure under the inHuence of interfacial energy alone is
characterized by an isotropic domain morphology which evolves in a self-similar way with time. We
have studied the breaking of rotational symmetry due to additional anisotropic elastic misfit interactions
in the model alloy Ni-Al-Mo. Introducing a dimensionless parameter p as the ratio of elastic to
interfacial energy, we show that, as long as p ( 1, the spherically averaged structure function still has
time-scaling properties. Under these conditions, the spatial anisotropy of the domains increases linearly
with p and can be understood as a perturbation of the isotropic process at p = 0.

PACS numbers: 61.10.Lx, 64.70.Kb, 81.30.Mh

The domain patterns during coarsening of a two-phase
structure [1] are usually found to evolve in a universal,
self-similar way, as long as the reduction of interface en-

ergy remains the only driving force [2—6]. The structure
function which characterizes the domain morphology and
arrangement is then rotationally symmetric, and its evo-
lution can be represented by a single typical length scale,
e.g. , the average domain size R [7—9]. In solid systems,
such as metallic alloys, this universal behavior may be
broken by the occurrence of long-range anisotropic inter-
actions due to lattice strains [10—16]. The aim of the
present work was to investigate this violation of universal
scaling due to elastic anisotropy and to characterize the
kinetics of this process. For this purpose, we have chosen
the model system Ni-A1-Mo, which belongs to a class of
alloys known as the nickel-based superalloys [17—22].

In these alloys, precipitate shapes are known to change
from initially spherical to cuboidal- and plate-shaped
morphologies [17—22]. The most striking effect is an
almost periodic arrangement of the precipitates along
the elastic soft directions, first found and discussed in
terms of elastic interactions by Ardell, Nicholson, and
Eshelby [17]. Since the elastic energy E,i scales with
the volume of the domains and the interfacial energy F~
with their surface [12], the shape of the growing domains
will typically change at sizes R, where F, ~ becomes
comparable to Fs [12,14,21].

From these observations it becomes evident that the
domain morphology is isotropic and its evolution self-
similar when F.,j

= 0, but is highly anisotropic when
F.,1 ) F~. The question arises whether in the interrne-
diate regime, when

0(p —= (1, (1)
Fg

the kinetics of domain coarsening may be described by a
perturbation of the self-similar behavior at F,~

= 0. In
the present paper we show that, as long as the precipitates
are not too large (that is p ( 1), the spherically averaged
structure function for Ni-Al-Mo alloys exhibits dynamical

scaling behavior and that the scaling function is consistent
with the universal curve found in systems without elastic
misfit strains [8]. Also, the domain size R grows like R ~
t't3 [23] as a function of time t The only d. eviation from
scaling consists in the spatial anisotropy of the domains,
which increases with time. Here we demonstrate for
the first time that this anisotropy can be expressed in
a very simple, universal way as a function of p for
several Ni-Al-Mo alloys with different compositions,
aging temperatures, and times. Only in the very late
stages of coarsening, when p ) 1, this picture breaks
down and the time evolution cannot be represented as a
function of R and p alone.

We have investigated the time evolution of the pre-
cipitate morphology in a series of six Ni-Al-Mo single
crystals with different molybdenum content and, hence,
different lattice constants a [21,22]. Since the elastic
energy is proportional to the square of the lattice mis-
fit 6 = (a„—a )/a„(a and a„arethe unconstrained
lattice constants of matrix and precipitates, respectively),
alloys with different misfit values from —0.5% to +0.65%
were studied in this way. One of the alloys had ap-
proximately zero misfit. After homogenizing and water
quenching, the samples were isothermally aged at tem-
peratures between 775 and 910 C for different times. In
this temperature range, the equilibrium volume fractions
of precipitate phase are in the range between 10% and
20% for all six alloys [21,24].

The time evolution of the structure function was in-
vestigated by single crystal small angle x-ray scattering
(SAXS) [25]. Figure 1 shows a typical SAXS spec-
trum 1(a, 'P) in the (110) plane of reciprocal space with
the main crystallographic directions indicated. q is the
length of the scattering vector q, and 'P its angle mea-
sured with respect to the [001] direction. The scatter-
ing intensity —far from being isotropic —exhibits a strong
maximum along [001],which is due to the preferred align-
ment of precipitates along this direction. First, the tem-
poral evolution of the location of this interference peak
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FIG. 1. The SAXS intensity is shown in a logarithmic
pseudogrey scale versus scattering vector in the (110) plane
for the alloy with misfit 6 = —0.5% aged at 910 C for 10
min. The scattering vector in the box ranges from —0.1 to
0.1 A ' for the horizontal [110]direction and the vertical [001]
direction. The main crystallographic directions are indicated by
arrows.
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FIG. 2. The inverse location of the interference peak Dpp]
(black symbols) and the inverse width of the structure function
Wpp~ (open symbols) are plotted versus the mean precipitate
radius R. Different symbols correspond to different alloys
and/or aging temperatures. The solid lines are linear fits to
the data. The ratio Doo~/Woo~ is approximately 0.75.

was obtained from the scattering vector qm„at the peak
maximum by DIIIII = 2~/qm„. Second, the full width
at half maximum (FWHM) of the peak in radial direction
was also determined and WIIIII = 27r/FWHM calculated
for all data sets. For the alloy with negligible misfit, the
SAXS spectrum was found to be isotropic, and instead of
a maximum in the [001] direction there was a ring-shaped
intensity. Indeed, it is a well-known fact from decom-
posing alloys without elastic interactions that the intensity
is isotropic and that a maximum of the same height ap-
pears along any crystallographic direction [1,8,9]. Third,
to characterize the deviation from isotropy for the alloys
with nonzero misfit we have determined the maximum
intensity I ('P) = I(q „,I') for all measurements. Fi-
nally, the mean precipitate radius R was evaluated as a
radius of gyration using slices along the [111]direction
[25], assuming that the precipitate shape is not too differ-
ent from spherical. Indeed, for all the data presented here,
the ratio p between elastic and interfacial energy does
not much exceed unity where shape changes from sphere
to cube usually start [14,21]. Most of the anisotropy in
our data (see Fig. 1) is, in fact, due to an anisotropy of
the arrangement and not so much of the shape of the
precipitates.

Figure 2 shows a plot of Dao~ and 8'00~ as a func-
tion of R. Both exhibit a linear dependence on R, which
indicates a scaling behavior for these parameters. The
ratio g = DotII/Wont = 0.75 is remarkably close to the
values found for coarsening without elastic misfit inter-
actions, where g varies from about 0.9 to about 0.75
for a volume fraction of precipitates between 10% and
20% [26]. Moreover, in agreement with previous work
on the same alloy system [21], R was found to increase
linearly with t'~ . Hence, we conclude that all three pa-
rameters Dao~, 8'oo~, and R remain proportional to each
other during coarsening and increase according to the
Lifshitz-Slyozov-Wagner law [23]. If it were not for the

anisotropy of the scattering spectra, one would conclude
that the alloy system behaves exactly like a stress free sys-
tem obeying scaling laws in time.

Nonetheless, there is a growing deviation from a self-
similar evolution evident from our data, mostly due to
particle alignment. This fact is rejected in the angular
dependence of I ('If), as shown for a few examples
in Fig. 3. Generally, the SAXS intensity will deviate
from its spherical average I(q), but will reflect the
cubic symmetry of the lattice. Consequently, we have
tried to describe this deviation in terms of the cubic
harmonics [27]

SI(n) = n n + n n + n n, , (2)

Sz(n) =n n n, , (3)
where n = q/q denotes the unit vector in the direction
of q. (n„nY,n, ) are the Cartesian coordinates of n with
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FIG. 3. Angular variation of the intensity I (0') at q = q „

with the angle 'P in the (110) plane, for the alloy with misfit
6 = —0.5% aged at 780'C for 32 min (circles), 100 min
(squares), and 460 min (triangles). The main directions within
this plane are indicated. The full lines are fits to the data using
Eq. (4).
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respect to the cubic crystal lattice. Fits of I (W) were
performed using the function 2.0

I (+) = I(q -)I:1+~Pl+ pP2] (4) 1.6

where P~ and P2 are linear functions of S~ and 52, chosen
so that their spherical average is zero, that is,

I 1-2
~\" 0.8

P] = 1 —55', P2 = 1 —10552, 0.4

and where n and p are two constants. Figure 3 shows
examples of fits with Eq. (4), where Pi and P2 were
expressed as functions of the polar angle W within the
(110) plane.

The spatial anisotropy, as described by the constants
cr and p [see Eq. (4)], was found to increase with the
domain size R as well as with the absolute value of
the misfit 6. Generally, we expect the anisotropy to
increase when the anisotropic part of the elastic energy
F.,'~ becomes larger with respect to the interfacial energy
Fs. To estimate the ratio p of these energies [Eq. (1)],
F.,'i was written in a rough approximation as zlhl6 V
and Fs as o V/R. Here 5 = (Cii —Ciz)/2 —C44
describes the elastic anisotropy (Cii, Ciz, and C44 being
the cubic elastic constants) [12],o. is the interface tension,
V the total volume of the precipitates, and R their mean
radius. Consequently, the ratio p can be expressed in
terms of quantities accessible in experiments:

A somewhat similar dimensionless parameter was al-
ready used by Voorhees and co-workers [14,20] to de-
scribe the shape evolution of a single misfitting precipitate
in an infinite matrix. In their work, the shear modulus C44
instead of lh I

was used to estimate the ratio between elas-
tic and interfacial energy. It should be noted in this con-
text that precipitate shape bifurcations are possible even in
the elastic isotropic case (5 = 0), if the elastic moduli of
matrix and precipitates are different [10,11,13]. However,
since elastic anisotropy is the dominating contribution to
the elastic energy in Ni-Al-Mo [28], the parameter lhl in
Eq. (6) should refiect the right combination of elastic con-
stants for this particular case. Nonetheless, even another
combination of elastic constants would not alter the con-
clusions of the present paper, since 5 is not a function
of time.

The coefficients n and p were fitted to the data
using Eq. (4), and their dependence on the ratio p is
shown in Fig. 4. In the presentation of the data, we took
rT = 20 mJ/m [17], Cii = 232 GPa, Ci2 = 153 GPa,
and C44 = 117 GPa [29] for all alloys investigated. Most
remarkably, both n and p exhibit a linear dependence
on p for all our data as long as p ( 1 (n = 2p and

1

p = 6p). This means that the evolution of the angular
anisotropy can, in fact, be described with one parameter
only, namely, the energy ratio p. Therefore the scattered

intensity can be written for small p as

I(q, t) = I(q, t) I
1 + p(t)P(n)], (7)

where the spherically averaged intensity follows the usual
scaling law

I(q, t) = R (t)F(q R(t)), (8)

F being the time independent scaling function [1,8,9].
The function P is also independent of time and given in
terms of the cubic harmonics as

1P = 2P] —6P2. (9)

As long as p ~ 1, the structure function can be
represented by Eq. (7), where the only time dependent
parameters are R and p. However, when p exceeds
unity, n begins to deviate from the linear behavior seen
in Fig. 4. For even larger p, the I001] peak in I (If)
(Fig. 3) becomes very narrow and cannot be represented
by Eq. (4) anymore. Moreover, the ratio DQQi /WQQi

ceases to be constant for p ) 1 and increases due to a
narrowing of the peak along the [001] direction. These
effects are consistent with three-dimensional [15] and
two-dimensional [30] computer simulation results . A
dependence of the anisotropy on the volume fraction [19]
might also be expected, but —as the volume fractions do
not differ significantly for our alloys —this effect may not
show up in our data.

In conclusion, the results reported here for Ni-Al-Mo
alloys support the idea that, when p ( 1, the effects of
elastic anisotropy can be separated from an overall "inter-
facial energy driven" evolution of the rnicrostructure. The
mean structure parameters (e.g. , precipitate size and dis-
tance) evolve according to the Lifshitz-Slyozov-Wagner
law [23], and the spherically averaged structure func-
tion exhibits dynamical scaling [3,8,9]. The main effect
induced by the elastic misfit interactions is the spatial
anisotropy in the arrangement of the domains. Using a

0.0 0.2 0.4 0.6 0.8 1.0 1.2

p=EJE,
FIG. 4. The fit parameters n and —P describing the spatial
anisotropy [Eq. (4)] are plotted versus the ratio of elastic to
interfacial energy p [Eq. (6)]. Different symbols correspond
to different alloys and/or aging temperatures. The full lines
correspond to n = 2.02p and —P = 0.165p.
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perturbation approximation, the kinetics of the develop-
ment of the anisotropy can be described by one parameter
only, namely, the time dependent ratio p between elastic
energy and interfacial energy. This simple picture was
found to hold as long as p is smaller than unity.
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