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Transport Properties of Random Media: A New Effective Medium Theory
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We present a new method for efficient, accurate calculations of transport properties of random media.
It is based on the principle that the wave energy density should be uniform when averaged over length
scales larger than the size of the scatterers. This scheme captures the effects of resonant scattering of
the individual scatterer exactly, as well as the multiple scattering in a mean-field sense. It has been
successfully applied to both "scalar" and "vector" classical wave calculations. Results for the energy
transport velocity are in agreement with experiment. This approach is of general use and can be easily
extended to treat different types of wave propagation in random media.
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In recent years, there has been a growing interest in
studies of the propagation of classical waves in random
media [1]. While some of the features associated with
weak localization, such as enhanced coherent backscat-
tering, have been detected in light scattering experiments
[1], the localization of classical waves in random sys-
tems has not been established beyond doubt. Recent
experimental results [2] for the diffusion coefficient D
and the transport mean free path 8, demonstrated that in
a disordered medium, low values of the diffusion con-
stant D = vEZ, /3 were caused by extremely small val-
ues of the energy transport velocity vz and not by the
small values of 4, , which signifies strong localization.
To explain this low value of the transport velocity, a
theory was developed by van Albada et al. [2], in the
low-concentration limit, of the Bethe-Salpeter equation.
They argued that their approach gives the correct trans-
port velocity observed experimentally, which is the en-

ergy transport velocity vE and not the phase velocity
v~. vz is approximately equal to the velocity of light
c divided by an appropriate index of refraction. vz is
always less than vp, especially close to the Mie reso-
nances. The renormalization of the diffusion coefficient
near resonances in random media has been extensively
studied [3—8] after its introduction by the pioneer work
of van Albada et aL [2]. It is by now well understood
that to lowest order in density of the dielectric scatterers,
the strong decrease in the transport velocity is due to the
Mie resonances. Near resonances, a lot of energy is tem-
porarily stored inside the dielectric scatterer or equiva-
lently the wave spends a lot of time (dwell time) inside
the dielectric scatterer.

Experimental results [9] for alumina spheres have
shown that as the volume fraction of the scatterers f
increases towards close packing (f = 0.60), there is no
structure in the diffusion coefficient versus frequency.
This clearly suggests that there is no structure in the
transport velocity. It is, therefore, inappropriate to cal-
culate the transport velocity using the vE of van Albada
et al. [2] in this high-f regime since their theory for uE

is a low-concentration theory. But, if we, nevertheless,
calculate [10,11] v~ according to Ref. [2] for this high

f = 0.60, strong structure in v~ is obtained in disagree-
ment with the experimental results. An extension of the
well-known coherent-potential approximation (CPA) was
recently developed [10] and obtained a CPA phase ve-
locity for f = 0.60, which is qualitatively consistent with
experiment, in not showing any structure as a function of
the frequency. The newly developed [10] coated CPA for
low f gives a CPA phase velocity which is higher than
the velocity of light near Mie resonances. This is an un-
desirable feature of the CPA that had to be fixed. Thus,
for small f, the theory of van Albada et al. [2] seems to
give the correct transport velocity ve, while for large f,
it is the coated CPA approach [10—12] that seems to give
transport velocities consistent with experiment [9].

In the present Letter, we present a new approach
in calculating the transport properties of random media
that takes into account the multiscattering interactions
in a mean-field sense. The main new physical idea is
that in a random medium the energy density should be
uniform when averaged over the correlation length of the
microstructure. This approach has been applied to both
scalar and vector classical wave propagation in random
media with many successes. For both the scalar and
vector cases, we obtain results for the energy transport
velocity that gives pronounced dips in uE for low f, while
as f increases the dips are smeared out, as expected and in

agreement with experiment. In addition, this new energy-
density CPA gives the correct long-wavelength limit for
the effective dielectric constant for both the scalar and
vector cases. The energy density for the vector case is
calculated exactly, where both the electric and magnetic
field contributions are taken into account. For the vector
case, analytical as well as numerical results of this
approach give that the long-wavelength dielectric constant
is given by the Maxwell-Garnett formula. The formalism
that has been developed in this Letter can be easily
extended to treat different types of wave propagation in
disordered systems and is therefore of general use.
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We consider a composite medium of two lossless
materials, with dielectric constants e] and e~. Our
composite medium is assumed to consist of spheres with
diameter d = 2R and dielectric constant e~ randomly
placed within the host material with dielectric constant
e2 = 1. The random medium is characterized also by
f, the volume fraction occupied by the spheres. We
consider first the propagation of classical waves [13] in
a random medium described by the wave equation for
the scalar field 'If, [V' + tu e(r)/c ]'P = 0, where E(l )
is a random variable. By correctly handling the Ward
identities, van Albada et al. [2,7,8] reported that in the
low density limit, D = vFE, /3, where vE is given by

C2

vp(1 + 6)
(1)

d rpF (r),

which is also shown schematically in Fig. 1. pz (r) and
(i)

(2)
p~ (r) are the energy densities for the configurations
shown in Figs. 1(a) and 1(b), respectively. For scalar
waves the energy density is

p ( ) = —[ '
( ) I+( ) I'/ ' + l~+( )I'], (4 )2

self-consistently. The self-consistent condition for the
determination of k, or t is that the energy content of
the coated sphere embedded in the effective medium [see
Fig. 1(b)) is equal to the energy content of a sphere of
radius R, with e dielectric constant [see Fig. 1(c)] i.e.,

d3rpF (r) =(~)-
(3)

The quantity 6 is given by

d'r 1+k'(r) I'(~(r) —I], (2)

whereas the energy density of the vector waves is given
by

with n the number density of the scatterers, and %1, (r) is
the one-scatterer eigenfunction with incident wave vector
k for a single dielectric scatterer. Physically, 6 can be
larger when the incident wave frequency coincides with
an internal resonance of the scatterer. When that happens,
~'Ij'q+ (r) ~

has a large magnitude inside the scatterer,
leading to a large 6, and therefore, to small values of v~.
A more convenient representation for numerical purposes
of 6 for scalar waves was given by van Tiggelen [14],
where v~ was written with respect to the Van de Hulst
scattering coefficients of the scalar dielectric sphere [see
Eq. (3.87) of Ref. [14]]. The Amsterdam group [2,7,8, 14]
extended their scalar results for the renormalization of
vz to the vector case by simply replacing the scalar
single-scatterer t matrix with the vector t matrix. This
is an oversimplified approximation of the real vector
problem. The polarization of the EM waves has to be
taken into account on a fully vector calculation in deriving
the Boltzmann equation, starting from the Bethe-Salpeter
equation. This is still the outstanding problem of the
field. If indeed one makes this approximation, a v~ is
obtained [see Eqs. (28) and (29) of Ref. [2]] that is much
lower than v~ and it has pronounced dips close to the
Mie resonances of the isolated dielectric scatterer. In
addition, the long-wavelength limit of v~ and therefore
of the dielectric constant e is given by e = 1 + 3f(Ei
e2)/(et + 2e2) and not by the Maxwell-Garnett theory
result, which is the "correct" result for the vector case.

Here, we present a new approach for calculating the
transport properties. Consider, for example, a random
medium composed of a dispersion of spheres as shown
in I ig. 1. The basic structural unit may be regarded
as a coated sphere, as represented by the dashed lines
in Fig. 1(a). The radius of the coated sphere R, =
R/f' 3, where R is the radius of the solid sphere. Let
k, = ~ecu/c characterize the effective medium, which
has an average dielectric constant e to be determined

p~(r) = —L~(r) l&(r)l' + plH(r)l'],
2

(4b)

where p, is the magnetic permeability which is taken equal
to I and W(r) and F(r) and H(r) are the scattering wave
function and the scattered electric and magnetic fields for
a plane wave incident on a coated sphere, respectively. In
Eq. (3), e is the parameter to be determined. It should be
noted that the energy density, and, therefore, 'P(r) being
a scattering wave function, implicitly depends on e. We,
therefore, have Eq. (3) as the self-consistent condition for
our energy-density CPA. We find that this condition is

~, ~
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J ~
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FIG. 1. (a) In a random medium composed of dielectric
spheres, the basic scattering unit may be regarded as a coated
sphere, as represented by the dashed lines. To calculate the
effective dielectric constant e, a coated sphere of radius R,. =
R/f '~3 is embedded in a uniform medium. The self-consistent
condition for the determination of e is that the energy of a
coated sphere (b) is equal to the energy of a sphere with radius
R,. and dielectric constant e (c).
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easily satisfied with a few numbers of iterations (of the
order of 10) for all frequencies and filling ratios. This
was not the case for all the previous CPAs. There the
solution of the corresponding self-consistent equation can
disappear or jump abruptly or even get multiple solutions.
This new scheme can easily follow the unique solution of
the self-consistent equation. We feel that the integration
over all angles in Eq. (3) is responsible for the well

behaved solution. It should be noted that W(r), F(r), and

H(r), being scattering wave functions, implicitly depend
on e. When Eq. (3) is satisfied, we have that the energy
transport velocity

1 —Re//k2,
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where the self-energy X = 4vrnf (0) is calculated with the
embedding medium characterized by e and f(0) is the
forward scattering amplitude. Equations (3), (4), and (5),
together define a mean-field approach to the calculation of
the transport velocity.

We have systematically calculated the energy content
of the sphere and coated sphere for the scalar and vector
[15] cases. It is very remarkable that the energy stored in
a dielectric sphere or coated sphere for both the scalar and
vector cases are given by these relatively simple forms,
which are very convenient for numerical calculations. In
Fig. 2, we present the result obtained for the frequency
dependence of energy transport velocity for scalar waves
and for three different filling ratios. We presented the
frequency as d/A;, where d is the diameter of the
dielectric sphere and A; = 2vrc/~~a~ is the wavelength
inside the sphere. Notice that the vE exhibits pronounced
dips as a function of frequency only at low scatterer
concentrations, in agreement with the results of the
Amsterdam group [2,7,8] and experiments [9]. At around

f = 0.10 the Boltzmann theory of the Amsterdam group
starts to deviate from our results. At higher scatterer
concentrations, the variation with frequency is reduced,
as physically expected. Remember that the low density
approximation of the Amsterdam group gives negative
values of uE for f = 0.60. For the scalar case, we also
calculated analytically the long-wavelength limit of e, and
indeed we find that e = fr~ + (1 —f )ez, as expected.
In Eq. (3), if one replaces the energy density ptzl(r) of

E
the effective medium by p~'l(r), one obtains the self-

E
consistent equation [13,14]

R,
d'r pE (r) [e(r) —e] = 0

This equation is exactly equal to Eq. (1), provided that the
background dielectric constant is e and not unity.

This new energy-density CPA scheme can be easily
applied to the vector case. The energy density for
the vector case is given in Eq. (4b), and contains the
contribution from both the electric and magnetic fields.
Up to now all the low density limit theories, as well
as the CPA, were developed by just transferring all the
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scalar wave formalism to the vector case, without taking
the vector character of the wave function into account.
The vector character was used only in calculating the
t matrix or the forward-scattering amplitude for the
dielectric scatterer. In Fig. 3, we present the results for
the frequency dependence of vE for the vector case,
for three values of f Notice th. at for f = 0.15, u~
has pronounced dips close to the Mie resonances, but
these dips become weaker or disappear altogether as f
increases. These results capture the correct physics, by
exhibiting dips near resonant frequencies for low f and
no structure for high f, in agreement with experiment.
We have also analytically calculated the long-wavelength
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FIG. 3. The energy transport velocity vz for vector waves
calculated by the energy-density CPA vs d/A; for alumina
spheres with dielectric constant 9.0 for different values of filling
ratios.

d/A;

FIG. 2. The energy transport velocity vz for the scalar waves
calculated by the energy-density CPA vs d/A; for alumina
spheres with dielectric constant 9.0 for different values of filling
ratios.
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limit results for e and found that

3fn 1 62
E2 1 + where n =, (6)

1 —fa E~ + 2E2

which is the Maxwell-Garnett theory result. Finally, we
want to mention that within the energy-density CPA, we
can also calculate [13] the scattering mean path Z, from
the following expression:
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Preliminary results for 8, agree with the weak scattering
results for low f and low frequency. At higher f, there is
structure in the frequency dependence of E„near the Mie
resonances, which becomes weaker as f increases.
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x (lcil' + lidil')Wi (j i,ji),

k2R,1 M 1
E, =—

2 c' l=] I 2 k2R,
p dp

x [(Icil'yi' + Idil'yi')

x W, (j, , j)(tj)

+ (Icil gi + Idil

(~)X Wi (ni, ni)

+ 2(lcil'Oidi + Idil'yi ni)

X Wi ( ji, ni)],
(t)

Wi (zl, zl) = (2l + 1)zl(p)zi(p)
(&)

+ (l + 1)zi i(p)zi i(p)

+ l„,( p) z+i, ( p),

itl'l 1/l(klR)Xi(k2R) (k2/kl)1/i(kl R)XI (k2R)

gi = Pi(k2R) 1/t,'(ki R) —(k2/ki) 1/t,'(kgR) 1/ti(ki R),

yl (k2/kl)XI(k2R)ij i(klR) Xi(k2R)kl(k1 R) ~

ili = (k2/k)) P((k2R) Pt(ki R) —P,'(k2R) Pi(ki R),

where k; = e; ai/c and i = 1, 2. P and X denote
i/2

the Ricatti-Bessel functions of first and second kind,
respectively. The c~ and d~ are the scattering coefficients
for the field inside the core. Similar expressions have been
obtained for the scalar case.
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