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An initial cloud of particles floating on the surface of a flowing fluid will often tend to a fractal

pattern.

If the wave-number spectrum of the pattern has an observable power law dependence k7,

then the exponent p is predicted to be p = D, — 1, where D, is the correlation dimension of the
fractal attractor. Numerical, experimental, and theoretical results are shown to support this prediction,
but it is also found that, when the observable range in k is limited, the predicted power law scaling can
be obscured by fluctuations in the k spectrum. The expected behavior can, however, be restored by use

of averaging.
PACS numbers: 05.45.+b, 47.20.-k, 68.10.Gw

Recent experimental [1] and theoretical [2] work has
shown that particles floating on the surface of a flowing
fluid can be attracted to a fractal distribution as time
increases. The situation is analogous to a strange attractor
of a dynamical system except that here the attractor exists
in physical space (i.e., the fluid surface) rather than in
an abstract phase space. Figure 1 shows an example
illustrating the existence of a fixed point attractor (the
point A) for floating particles on the surface of a fluid
with a very simple steady flow. The point is that, with
a slightly more complicated and time-dependent flow,
attractors may still be present (as in Fig. 1), but they
can be strange (i.e., fractal). Note that the particles on
the surface can have an attractor even when the three-
dimensional fluid flow is incompressible. We believe
that this may be the mechanism responsible for the
formation, commonly observed in nature, of convoluted
spatial patterns of objects floating on bodies of water (e.g.,
algae, pollutants, etc.). (While throughout this paper our
presentation is in the context of floaters, we emphasize
that many of our considerations apply very generally to
spatial patterns of multifractal measures [3].)

It is predicted [4] that the angle averaged wave-number
power spectrum F (k) of such a fractal pattern in the (two-
dimensional) fluid surface is a power law, F(k) ~ k™7,
with exponent given by

p =D, — 1, M

where D, is the correlation dimension [5] of the attractor.
Here F(k) is defined by

F) = @m)? [ @5 — IKDAGK),

and H(k) is the Fourier transform of the two point corre-
lation function H(r) = (¢ (x)¢(x + r)), where the angle
brackets indicate a spatial average over the domain D of
the flow. In this paper, using numerical, experimental,
and theoretical results, we investigate the applicability of
(1). We find that, when the observable range in k is lim-
ited, the predicted power law scaling can be obscured by
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fluctuations, but that averaging can often restore the pre-
dicted scaling behavior, Eq. (1).

One way to derive (1) is to start with Parseval’s
theorem,

j P2 (x)d*x = [wF(k) dk , ()
D 0

where ¢(x) is the density of the floating particles, x is
the spatial coordinate in the fluid surface, ¢ is normalized
so that [ ¢(x)d?x = 1, and the X integration is over the
area of interest. Imagine that there is some cutoff scale Ly
for the finest variation of ¢ (x) (e.g., due to diffusion of
the floating particles). Also assume a power law scaling
range for F(k),L;' > k > Lgl, where L is the overall
scale size of the flow. We estimate [ ¢p2d?x ~ 3, ¢p7L3,
where the fluid surface has been divided into a square
grid of boxes of size Ly, and ¢; is the value of ¢(x)
in the middle of the ith box. We now associate a
measure w; with each box, u; = [.,; # d*x ~ ¢;L.
Thus [ ¢2d?x ~ L;?Y p?. From the definition of the
correlation dimension, ¥ u? ~ L5?, which then yields

f d*rd*x ~ L7, 3)

Assuming that F(k) ~ k™7 with a large k cutoff at
k ~ L7, the right hand side of (2) is of order L;(lip)‘
Combining this with (3) then yields (1) for the exponent
p [6].
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FIG. 1. The floating particles move toward point A.
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We now consider a numerical test of (1). To do
this we utilize a random version [2] of the Zaslavsky
map [7], Xn+1 :[xn+y/1(1 _e_a)/a]mOdzﬂ'syrH-l:
Kk sin(x,+, + 6,) + e " “y,, where 6, is chosen randomly
in [0, 277] at each iterate (for 8, = O we recover the map
in [7]). As discussed in [2], this map models the motion
of particles floating on the surface of a fluid in which there
is a horizontal shear flow, vertical downwelling (o > 0),
and temporally irregular horizontal vortical motion [the
term k sin(x,+; + 6,)]. The Jacobian determinant of our
map is independent of x and y and is equal to e * < 1.
Thus, areas are uniformly contracted by the map. This
contraction property of the floating particles is due to
the vertical downwelling flow component (cf. Fig. 1). In
what follows we take & = 0.09 and k = 0.5.

We generate “‘snapshot attractors” [1,2,4,8] by ran-
domly sprinkling 10° initial conditions uniformly in 0 =<
x = 2m,—2 =y = 2, then iterating each such initial
condition using the same random realization of the se-
quence of phase angles {6,} for each orbit, and recording
the pattern after ~107 iterations. Figure 2 shows an ex-
ample of a snapshot attractor obtained in this way.

Using many different random realizations of the se-
quence {6,}, different snapshots were obtained. For each
snapshot we performed a box-counting determination of
the correlation dimension using the standard procedure of
log-log plotting the correlation versus box size and esti-
mating D» as the slope of the best fit straight line. For all
snapshots very nice straight line behavior was observed,
all with nearly the same slope. We estimate from these
data that D, = 1.39 *+ 0.01.

Wave-number spectra were obtained for each of
20 snapshots. Figure 3(a) shows a log-log plot of one
of these spectra. Power law dependence corresponds to
a straight line on this plot. While Fig. 3(a) is roughly
consistent with a linear decrease with large fluctuations
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FIG. 2. Pattern formed by 10° randomly placed initial con-
ditions after 107 iterates of the random Zaslavsky map with
a = 0.09 and k = 0.5.

superposed, the result is not very convincing. On the
other hand, a much more convincing linear (i.e., power
law) decrease is obtained by averaging the 20 spectra.
This averaged spectrum (F) is shown in Fig. 3(b). Fur-
thermore, the slope of the best fit straight line to the data
in Fig. 3(b) yields p = 0.382 = 0.004. This compares
very well with the predicted value 0.39 = 0.01 obtained
from box counting and Eq. (1).

We interpret the evident power law obtained by aver-
aging [Fig. 3(b)] as resulting from fluctuations in the k
spectrum that vary randomly from snapshot to snapshot.
The result of Fig. 3(b) can be understood if the fluctua-
tion component tends to cancel upon averaging, thus leav-
ing the pure power law component.

As a further test of (1), we have calculated the infor-
mation dimension D; by box counting. Inserting the result
for D; in place of D, in (1), we obtain p = 0.50 =
0.01. This result is clearly at odds with the result p =
0.382 = 0.004 obtained from Fig. 3(b), thus supporting
the contention that the correlation dimension D, is the
proper dimension to use.

We have also tested the applicability of (1) using data
from the physical experiment on particles floating on a
fluid surface described in Ref. [1]. In that experiment, a
large number of tiny fluorescent spheres were distributed
on the surface of a fluid initially at rest in a chamber with
an annular barrier coming almost to the free surface. Fluid
was pumped, for a fixed interval, up from the bottom of the
outer portion of the chamber; it flowed over the barrier and
out a central drain. The fluid was then allowed to come

@)

FIG. 3. (a) F(k) versus k for one of the snapshots. (b) Plot
of the average spectrum (denoted (F)) versus k.
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to rest, and the particle distribution was imaged via fluo-
rescence. This sequence was repeated. Thus, there is a
close correspondence between the motion of the floating
particles in the physical experiment and a mapping in a
phase plane. In the absence of fluid instabilities, the parti-
cles would be expected to clump together over the central
drain. However, fluid instabilities created a recirculation
cell structure, which varied in orientation at each pump-
ing interval. These instabilities produced local stretching,
in addition to the global dissipation resulting from the an-
nular chamber. The randomly changing predominant ori-
entation of the recirculation makes the most appropriate
low-dimensional model of the surface flow a random map-
ping (strong evidence for the appropriateness of this model
is presented in Ref. [1]).

After a brief transient, the particles accumulated on an
approximately fractal attractor (with excellent scaling over
more than a factor of 100 in box size) that changed shape
from forcing period to forcing period. Agreement be-
tween the spatial pattern’s measured information dimen-
sion (which remained nearly constant) and the Lyapunov
dimension induced by the surface dynamics showed that
the system was well modeled as a random mapping, simi-
lar to that used in our numerical example.

Angle-averaged wave-number spectra were obtained
from a series of snapshots in the experiment; the snapshots
were separated by at least five forcing periods. In this re-
spect, the results from the physical experiment differ from
those discussed above, where each snapshot resulted from
a completely different realization of the random process.
Assuming the dynamical process is stationary, time aver-
aging and ensemble averaging should be equivalent. Note
that, in physical experiments, time averaging will often be
more feasible than ensemble averaging.

Figure 4 shows the observed wave-number spectrum for
a particular flow condition. The spectral rolloff predicted
from the correlation dimension (D, = 1.28 = 0.04) of the
particle distribution is consistent with the averaged mea-
sured spectrum. Individual spectra show poorer agree-
ment; as with the numerical results, averaging seems es-
sential to observe the predicted power law dependence in
the wave-number spectrum. The information dimension
(D = 1.61 = 0.04) of the observed particle distributions
would, as in the numerical case above, predict the wrong
scaling for the wave-number spectrum. Finally, it should
be noted that similar agreement was observed for a differ-
ent flow condition in the experiment. A fuller treatment
of these experimental results is given in Ref. [8].

To further explore the issue of averaging, we now
consider a simple example which is amenable to analytical
treatment. In particular, we examine a random version of
the generalized baker’s map,

Ax, + ay, if y, < %, (4a)
Xn+1 = 1 . 1

Axp + 3 + by, ify, <3, (4b)

Yn+1 = 2y, modl, (40)
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(a) theoretical slope: —p =1- D,

(b) average of 12 spectra
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(c) individual spectrum
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FIG. 4. Plot for the experiment [1] of (a) spectral rolloff
predicted by Eq. (1); (b) average of 12 wave-number spectra;
(c) the wave-number spectrum of an individual snapshot
(displaced downward for clarity).

where 0 < A < % and a, and b, are randomly chosen
on each iterate n and are contained to lie between 0
and % — A. Say that at some time far in the past, n =
—n- where n_ > 1, a smooth density of orbit points
¢ —,_(x) was initialized. [Here, since the natural measure
generated by (4) is uniform in 0 < y < 1, we consider
the measure (density) projected onto the x axis; thus we
are considering an effectively one-dimensional problem.]
At any positive time n, as n— — oo, the resulting density
¢, (x) approaches a fractal measure whose dimension D,
is given by [4] D, = In2/In(1/A). [Note that [4] the one-
dimensional version of (1) is p = D5.]

Now we consider the Fourier transform f,(k) of the
density ¢,(x). Making use of (3), we can express the
density at time n + 1 in terms of the density at time #,

¢n+l(x) = (2/\)_1{(}5”[()6 - an)/A]

cef(son-3) /]

Inserting this in the definition of the Fourier transform,
we have fr+1(k)= %{exp(—ika,,) + exp[—ik X (b, +
%)]}f,,()tk). Writing F,, = |f,|?, this becomes F, (k) =
cos?(kc,)F,(Ak), where ¢, = %(bn - a, + %). Succes-
sive application of this result leads to an explicit expres-
sion for F, (k) in the limit n_ — o,

Fo(k) = [ ] cos®(ke,—; A0 1), 5)
j=1
where we have made use of F,(0) = 1.
We now average the relation F,.(k) =
cos?(kc,)F,(Ak) over the random variables ¢,, for m =
n,n —1,...,—n_. Since the ¢, are independent,
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and F,(Ak) depends on c,, for m = n — 1, we have
that cos®(kc,) and F,(Ak) are independent. Thus
(Fr1(k)) = (cos?(kc,)){F,(Ak)). For sufficiently large
k, the quantity kc, ranges over many intervals of 27 as
c, ranges over its possible values; thus (cos?(kc,)) = %
for large k. For n- — o, (F,(k)) becomes independent
of n. Hence for large k and n_ — o,

(F(k)) = 5(F(AK)). ©)
Thus, when k is increased by a factor of A~!, the quantity
(F(k)) decreases by a factor of % In other words, (F(k))
conforms to a power law with the expected exponent,
In2/InA~!. Note, however that (6) also allows a periodic
oscillation of (F) as a function of logk superposed on the
general power law, and this oscillation, if present, would
have a period logA~!.

On the other hand, a log-log plot of the unaveraged
quantity F,(k) [given by (5)] is extremely irregular due
to the fact that logF, (k) = —co at all the zeros of the in-
dividual cosines (i.e., at the values of k where kc,—; A1
is an odd integer multiple of 7 /2). This is illustrated in
Fig. 5 where we plot numerically generated spectra using
Eq. (5). Shown in the plot is a single realization where
a, and b,, are selected randomly (we take a, and b,, to be
uniformly distributed in the interval [0, (% — A)]. Also
shown is the plot of the average spectrum generated by
replacing cos®(kc,—;A’ 1) in Eq. (5) by its analytical av-
erage. As can be seen, the average spectrum produces a
clear power law satisfying p = In2/InA~!, with a super-
posed periodic oscillation with period in logk of logA™!.
In contrast, the individual realization shows large fluctu-
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FIG. 5. Plot for the random baker’s map of F(k) for a single

realization and of (F).

ations. We have also examined the effect of randomly
varying the parameter A as well as the parameters a and b
from iterate to iterate. In that case we find that, for large
k, the oscillations are eliminated, and the averaged spec-
trum approaches a straight line on a log-log plot.
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