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Optical "Multiexcitons": Quantum Gap Solitons in Nonlinear Bragg ReAectors

Ze Cheng and Gershon Kurizki
Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel

(Received 4 May 1995)

We find a Bethe-ansatz solution for pairwise interacting quanta within the effective-mass regime
of band-gap propagation in nonlinear Bragg reflectors. Our theory predicts a new kind of collective
excitation of the electromagnetic field dressed by such media, namely, optical multiexciton (OME)
complexes (or condensates), which are quantum states associated with gap solitary waves. Their
existence should be manifested by the discrete spectrum of band-gap transmission as a function of
the transmitted photon number and by the multiexponential falloff of intensity-intensity correlations on
a 0.1 mm scale. OMEs should have advantageous stability properties.

PACS numbers: 42.50.Ct, 42.65.Vh, 78.66.—w

Quantum effects of light propagation in nonlinear fibers
have been the subject of extensive studies in recent
years [1]. These studies have established that optical
solitons, which are classically described by the nonlinear
Schrodinger equation (NLSE) [2], have quantum analogs
in the form of superposition of mutually bound (spatially
correlated) multiphoton states. The description of such
bound multiphoton states is given by the Bethe-ansatz
solution of the second-quantized NLSE [3].

Here we address the hitherto unexplored quantum
regime of optical propagation in forbidden spectral bands
(band gaps) of Kerr-nonlinear one-dimensional (1D)
Bragg reflectors, wherein transmission of solitary waves
(gap solitons) [4] and ultrashort pulses [5] has been pre-
dicted classically. By extending the Bethe-ansatz solution
to such systems, we reveal and investigate the striking
analogy between mutually bound multiphoton states of
quantum gap solitons and multiexciton complexes (ex-
citonic molecules) in semiconductors [6]. These optical
multiexcitons (OME) can be formed by the combined
effect of (i) photon effective masses, which are endowed
by the periodic-structure dispersion; (ii) Kerr-nonlinear
interband photon attraction; and (iii) their intraband
attraction or repulsion, also caused by Kerr nonlinearity.
The main manifestations of OMEs are predicted here to
be as follows: (1) a series of discrete transmission lines
in the optical band gap of the Bragg reflector, which cor-
respond to increasing numbers of photon pairs and range
from a single exciton to the "ionization" threshold; (2)
multiexponential falloff of two-point intensity-intensity
correlations. Both features exhibit dramatic, unparalleled
dependence on the refractive-index modulation in the
Bragg reflector.

Under 1D-propagation conditions in a z-periodic Kerr-
nonlinear Bragg reflector, with field confinement area
harp in the transverse (x-y) plane [7], the field depen-
dence on the transverse coordinates can be factored out.
The effective Hamiltonian can then be written in terms
of the negative-frequency envelope operators D(z, t) and

B(z, t) of the electric displacement and magnetic field as

ata +1 1

2epnz(z)
3~(s) z+ 3

Dt DODD . (1)4' p'epn'(z)
This Hamiltonian is similar to that used in studies of quan-
tum solitons in nonlinear fibers [1] except that the dielec-
tric index n (z) and the nonlinear susceptibility g( l(z)
are now periodic in z. We make the standard assump-
tion that only the two bands bordering a certain band gap
are involved in the nonlinear process [6], and denote the
lower ("valence" ) and upper ("conduction" ) bands by +
and —,respectively. The electric displacement and mag-
netic field operators can be quantized as

dz
2p, p

D(z) = P Pa.kD.k(z),

B(z) = g ga kB k(z), (2)
k

where a k are the usual annihilation operators for the two-
band photons, and D t, (z) and B t, (z) are the appropri-
ate Bloch functions [8] determined by the commutator
between Dt(z) and B(z). Consequently, the quantized
Hamiltonian reads

ir = P gZ~. ,a.',a.,
—1+L V~q(k, k )a~ g(+qa~ t- a~ —ta~ g~q

k,k', q

+L V;q(k, k )a k +qa+ k a+ t, a k+q . (3)——1

k, k', q

Here L is the structure length, V q(k, k') are the in-
traband matrix elements of the Kerr-nonlinear "poten-
tial, " and V,q(k, k') are the corresponding interband matrix
elements.

We are interested in photon properties near the extrema
of the two bands, where k = kp. We can therefore use
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the well-known effective-mass approximation [6] H= 6(cuiN++ o) N )+H, , (6a)

Z'(k —k.)'
ACO~k = II CO~

2m+

where m+ = +6/(8 cu+k/Bk )k„are the photon effective
masses in the two bands. It is important for what follows
that m+ and m are both positive and m+ 4 m for any
nonvanishing band gap. This fact can be illustrated by a
structure of alternating layers with refractive indices n1,
n2 and thicknesses a1, a2 such that n1a1 = n2a2. For the
second lowest band gap, the photon effective masses in
this structure are found to satisfy

Rntat 1 /n2 n~ l
m+- 1+ —

I
+ —

I

c(a~ + a2) 2&n~ n2)

2n1a1co+

One sees that lm —m+ I scales with the band-gap width
when ln2 —n~! (( n~ 2. Consistently with the effective-
mass approximation, we replace the potential matrix
elements in Eq. (3) by their values V~ and V; at q =
0 and k = k' = ko. As we shall be working in the
coordinate representation, we take the Fourier transform
of the annihilation operators a k, obtaining the following
position-dependent field operators:

I —1/2 g i(k —ko)z

k

The Hamiltonian (3) can now be rewritten as

where N = f @t P dz is the single-band photon-
number operator, and

H, = dz g [ n—(h /2m )B,@tB,@

+V 4 0 0 rt l]+ V @ 4+-4'+4

(6b)

l~'Jv, +Jv )— +(zi, . . . , Zw )
n=~ j=1

&& I:4.'(ZJ )dz, tlo),

where the spatial envelope (wave function) is

The "kinetic energy" terms depend on the structure
dispersion, whereas the "potential energy" signs are those
of the Kerr nonlinearity yt3l, i.e. , positive (negative) for
self-focusing (self-defocusing) media.

Since H, commutes with N, we seek simultaneous
eigenstates of both operators. Such eigenstates can be
obtained exactly by the Bethe-ansatz method, by extend-
ing the integrable quantum-field theory in Ref. [9] to the
present two-band system. We first construct the exact
four-quantum eigenstate, and then generalize it to arbi-
trary quantum numbers N+ + N . The resulting (N+ +
N )-quantum eigenstate is obtained from a tedious cal-
culation according to the aforementioned procedure. It is
given, in its unnormalized form, by

+(Zl+ ~ ~, ZN +)
n=1 l=1

im m+ V;
1 —
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ik, z, (8)

m~V~i 2 (N —2j+ 1),

!
The wave function 0'(z~+, . . . , Zz ) is symmetric with checked that the wave vectors ki in (8) must then satisfy
respect to the exchange of any two subscripts j and l for

m+ m m+ Vi
photonic coordinates, consistently with the bosonic nature
of photons. The application of the Hamiltonian H to the m m+ (m — m+)R

eigenstate !4~,+z ) yields the eigenenergy

6 kJn
F.~, +~ = R(cu+N+ + cu N ) + P g —n

2mnn=

(9)
In the above, all the wave vectors are measured relative to
the band-edge wave vector ko.

We are looking for bound-state solutions of (8),
wherein the exponential factors are real, and fall off
with the separation of photons from different bands

Izi+ —
z~ I

or from the same band, Izi —zj l. The
bound-state solutions require N+ = N =

¹ It can be

where n = ~ is chosen according to whether the Kerr
nonlinearity is positive (self-focusing) or negative (self-
defocusing), and NK is the total composite momentum,
which can be expressed as

N

NK = g(ki+ + ki ). (11)
j=1

Equation (11) indicates that bound states consist of N "ex-
citons, " i.e., pairs of conduction- and valence-band pho-
tons. On using Eqs. (10) and (11) in the wave function
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expression (8), we can bring it to the symmetrized form

nl zj' —— m+ zj'+ )W(zt, . . . , z~ ) ~ exp giK
m — m+

N
m m+V;x exp — ', Iz, + —z,

m m—+

IV. I g(m-lz, —z~-I + m+lz, + —zt+I) (12)
6

In this expression ordering of g~~ s is immaterial. The
wave function (12) falls off exponentially with the dis-
tance lzj+ —

z~ I, under the binding condition

m ~m+, V;~0, m ~m+, V~O. (13)

Clearly, such a wave function characterizes a bound state
of N excitons, as evident from the real exponential factors
and an overall translation (the first factor), analogously to
a delocalized Wannier excitonic complex [6].

The exponential factors in the bound state IC?q~) can
be revealed by the dependence of the intensity-intensity
correlation function [3] Gtz) on the separation g of two
photon counters detecting the field in the structure

(+~ I& (z)& (z)&'(z+ q)
x X (z + ~)l+&+)dz, (14)

where the operator X' (z) = P+(z) + @ (z) is the
position-dependent negative-frequency field enve-
lope. A laborious extension of the treatment in
Ref. [3] to the two-band system yields G (g) as
a linear combination of exponential factors of the
form exp[ —(c; + c )Igl], exp[ —(c+ + c )Igl],
and exp[ —(c; + c+/2 + c /2)lgl], where c; =
2m m+V;/(m —m+)hz, c = 2IV Im /Rz, and
n = + or —according to the Kerr nonlinearity sign.
We have evaluated Gt (q) for N = 2 (a biexciton) in
a periodic structure consisting of Kerr-nonlinear GaAs
layers alternating with linear dielectric layers. The
parameters concerned are as follows: p = 0.5 p, m,
at(GaAs) = 0.2338 p, m, az = 0.3044 p, m, and nt =
3.60. The refractive index n2 of linear die1ectric varies
from 1.00 to 3.574. GaAs has a nonlinear susceptibility

= —2.5482 x 10 ' (cm/V) for light frequencies
(3)

below the band gap Fg = 2.1573 x 10' s ' [10]. The
potentials V;, V and effective masses m have been
evaluated for the conduction and valence bands bordering
the second lowest band gap, for which the binding
condition in Eq. (13) holds (as opposed to the lowest
band gap in this structure, for which this condition fails).
Figure 1 clearly manifests the nonmonotonic dependence
of the multiexponential falloff of GN 2 with g upon the

(2)

refractive index ratio nt/nz. This dependence is a unique
feature of the present solutions, whereas in quantum
solitons traveling through Kerr-nonlinear fibers [3] the
exponential falloff of Gt l(g) depends only on the photon
number N.
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FIG. 1. Dependence of the intensity correlation function
G~ ~(g) on the detector separation g, for the photon number
2N =4.

The bound-state energy eigenvalues are found from
Eqs. (9) and (10) to have the following form:

Fzw = 2N"(~o ~ ~~w)

6 K m m+V;
~2N +

—m V'
(N —1), (15)

where cup = (m+ + co )/2 is the center of the band gap
and the upper (lower) sign is chosen according to that
of the Kerr nonlinearity. As seen from Eq. (15), bound
states are associated with discrete transmission lines at
&zw = coo cup~ in the band gap, whose progression
scales quadratically with half the transmitted photon num-
ber 2¹Remarkably, the discreteness of the transmission
spectrum will separate out different Fock states in the in-
cident coherent state according to their relative weights,
i.e., the spectrum will reAect the superposition of optical
multiexciton states with different photon number. This
discreteness will be revealed only if lm —m+ IV //t is
spectrally resolvable, otherwise the quasiclassical limit of
gap solitons will prevail. The lowest line N = 1, which
marks a single exciton, is the farthest removed from the
appropriate band edge, and the lines are drawn nearer
to the edge as N increases, as in the case of ordinary
Wannier excitons [6]. However, whereas Wannier ex-
citons have a Rydberg spectrum, with an infinite num-
ber of levels (which scale as 1/N ), the present bound
spectrum is terminated at N „,for which Eq. (15) yields
coo ~ co2N = ~, marking what can be dubbed the "ioni-
zation" threshold. Since the wave vector K of excitons is
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FIG. 2. Variation of the optical exciton frequency 0,2& with
the relative refractive index n&/n2 Th.e inset displays the
variation of the band edges co+ and ro with n~/nq, and
coo = (co+ + ro )/2 is the center of the band gap.

measured relative to 2ko, the effective-mass approximation
requires ~K~ && 2ko, so that we can let IC = 0 in Eq. (15).

The spectral features discussed above are shown in
Fig. 2 for the same structure as in Fig. 1. Here too the
dependence on n~/n2 is strongly nonmonotonic. A rather
restricted range of n~/nz allows the resolution of levels
associated with different N on a 0.1 GHz scale. The intrin-
sic intensity of a 2N-photon bound state has an approxi-
mate expression Iztv = 4NRAz~/rrp r, where r is the
pulse duration. Using a relative refractive index nt/nz =
3.4221 and a pulse duration ~ = 1.0 p, s, we have obtained
the intrinsic intensities I2~ = 8.77 X 10,3.07 X 10
7.28 X 10, 8.99, and 27.41 W/cm, respectively, cor-
responding to the quantum numbers N = 1, 35, 83, 10,
and 2.66 X 10, which is N „.For N ) N „the spec-
trum (15) is replaced by continuous bands of energy
eigenvalues, embedded in the allowed conduction and va-
lence bands. These bands are analogous to the classical
"out-gap" solutions obtained above a certain intensity
threshold [11].

To sum up, we have accomplished the Bethe-ansatz
solution for pairwise interacting quanta within the
effective-mass regime of band-gap propagation in 1D-
periodic Kerr-nonlinear dielectric structures. Our theory
predicts a new kind of collective excitation of the
electromagnetic field dressed by such media, namely,
optical multiexciton complexes (or condensates), which
are the quantum states associated with gap solitary waves.
Their existence should be manifested (i) by the discrete
spectrum of band-gap transmission, which allows us
to spectrally distinguish between OMEs with different
photon number typically on a MHz scale, and (ii) by the
multiexponential falloff of intensity-intensity correlations
typically on a 0.1 mm scale. Another distinct signature
of OMEs is the strong nonmonotonic dependence of
the above properties on the periodic modulation of the
refractive index in the structure.

OMEs should have advantageous stability properties,
provided both linear and nonlinear absorption are neg-
ligible. The stability properties of OMEs stem from
their being the exact bound eigenstates of the nonlinear
field Hamiltonian which accounts for single-photon and
two-photon processes in the medium. In nonabsorbing
media, OMEs should be stable against (a) spontaneous
radiative recombination, which is the main decay mecha-
nism of electron-hole excitons in semiconductors [6], (b)
self-focusing (self-defocusing) by the Kerr nonlinearity,
(c) pulse (wave-packet) dispersion and diffraction in the
dielectric structure, and (d) quantum Iluctuations in the
electromagnetic field. On the other hand, in order to en-
sure the OME stability against thermal scattering due to
thermal fluctuations in the dielectric function, one needs
low temperatures. If the dielectric structure is Raman
inactive, i.e. , optical phonon scattering is absent (as in
GaAs), then thermal scattering does not affect the reso-
lution of OME lines on a 0.1 GHz scale. The ability to
resolve OME lines corresponding to much lower N would
necessitate band-structure design aimed at increasing the
effective-mass difference ~m

—I+~ and the intraband
nonlinear potentials
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