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Quantum Nondemolition Demonstration via Repeated Backaction Evading Measurements
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Repeated backaction evading measurements have been performed for the first time.

The first

backaction evading device prepares the field state while the second one measures it again. The
conditional variance of the signal at the output of the first device given the measurement is 1.8 dB
below the shot noise and the signal to noise ratio transfer coefficient is 1.34. The conditional variance
of the final signal given the first device measurement is also 1.8 dB below the shot noise and the
normalized correlation between the two meter outputs is 0.3. These figures are clearly in the quantum
regime, and they constitute a full demonstration of the quantum nondemolition principle.

PACS numbers: 42.50.Lc, 03.65.Bz, 42.65.Ky

The principles of quantum mechanics allow one to mea-
sure many times a single observable of a quantum system.
However, the first precise measurement, which can ide-
ally be regarded as preparing the system in a well-defined
eigenstate of the measured observable, introduces also in
the system a “measurement noise,” which may eventually
come back to the measured quantity, preventing one from
retrieving the first result in the subsequent measurements.
A scheme where this noise is entirely kept in an observable
which is conjugated with the measured quantity is usually
called a “backaction evading” (BAE) measurement, while
this strategy was termed “quantum nondemolition” (QND)
by Braginsky and Vorontsov [1] and Thorne et al [2].
Though proposed and initially studied in the context of
mechanical oscillators for gravity wave detection [2-4],
QND ideas were first implemented in quantum optics [5—
12]. In the standard situation encountered with propagat-
ing laser beams, where the quantum fluctuations are small
compared to the mean intensities, quantitative criteria have
been developed for evaluating the efficiency of a given
experimental setup as a QND or a BAE measurement
device [13,14]. The first quantity to look at is the correla-
tion between the two outputs of the measurement system
(signal and meter), which characterizes the device ability
for quantum state preparation (QSP). This correlation can
be measured through the conditional variance Vg, of the
signal output S, given the measurement M. This quan-
tity has a built-in reference to the signal shot-noise level,
which is normalized to 1: Vg;y < 1 indicates nonclassi-
cal operation, while the ideal limit of perfect QSP would
be Vs i = 0. Other important quantities are the transfer
coefficients Ts and Ts, which quantify the transfer of the
signal to (quantum) noise ratio of the input signal beam
towards, respectively, the output signal and meter [14,15]:
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Ts + Ty larger than 1, up to the maximum of 2, can be
obtained using only a phase-sensitive device.

Many experiments have been devoted to the demon-
stration of BAE measurements. A first idea [16] was to
use the optical Kerr effect in order to couple the inten-
sity fluctuations of the signal beam to the phase fluctua-
tions of the meter beam. Using the nonresonant Kerr effect
in optical fibers, with either continuous wave (cw) beams
[5] or optical pulses in the soliton regime [6], quantum
noise correlation was demonstrated, but the performances
of these experiments were limited by unwanted phase noise
in the meter beam. Better results were obtained using
quasiresonant two-photon nonlinearities [7—9]. In partic-
ular, complete BAE measurements [9] were demonstrated
using two-photon transition in a sodium atomic beam,
with Vg = 0.85 and Ts + Ty = 1.35, clearly in the
quantum domain. Another series of experiments has been
initiated in Ref. [10] using pulsed traveling-wave y®
parametric gain. A type-II phase-matched potassium tri-
hydrogen phosphate (KTP) crystal is sandwiched between
two half-wave plates, and the signal and the meter are two
orthogonally polarized beams copropagating through the
device. The signal and meter beams are separated using a
polarization beam splitter. For a particular gain-dependent
orientation of the half-wave plates, called the “evasion
angle,” it was demonstrated that the device should operate
as a BAE device. Signal-meter correlations were again
demonstrated, but performances were limited by losses
and low parametric gain. More recently, it was demon-
strated [11] that traveling-wave phase-sensitive type-II
phase-matched parametric amplification can be combined
with twin beam correlation in order to meet all criteria for
BAE. This experiment demonstrated good performances
for optical tapping and duplication, but the signal output is
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an amplified copy of the signal input and, therefore, does
not follow exactly the initial QND idea. Finally, a full
BAE experiment was reported in Ref. [12], based essen-
tially on the same principles as Ref. [10], but for cw beams.
In that case, the gain of the parametric amplifier was en-
hanced using a ring optical cavity. The reported results
were Vs = 0.7 and Ty + Ty = 1.2, both values in the
quantum domain.

Though some of these experiments [9,12] have perfor-
mances that are good enough for QND, a full demonstra-
tion of the QND principle through repeated measurements
is still missing. Indeed, as expressed by Caves er al. [4]
and recalled in Ref. [12], “the key feature is repeatabil-
ity—once is not enough!” In this Letter, we report a re-
peated BAE experiment that clearly demonstrates all QND
features for repeated measurements. An important feature
is that each of the two BAE setups, based on pulsed type-
Il parametric amplifiers, also has performances that are the
best achieved so far and, therefore, make this demonstra-
tion more convincing.

The diagram for the QND scheme is represented in
Fig. 1. The signal under measurement is sent to a first
BAE (BAE)) setup. The output meter beam is detected by
a first high efficiency detector while the unperturbed sig-
nal goes through a second BAE (BAE,) setup having two
outputs: a second meter output and the signal output, both
detected by high quantum efficiency detectors. When the
orientation of the half-wave plates for each device is ad-
justed at the evasion angle arccos[(~/G + 1)/4/2(G + 1)],
where G is the phase-sensitive gain, the input-output rela-
tion of the quantum fluctuation for the BAE ;| device takes
the simple form [10]

X=X, X = X+ fixE
Yoit =Y — A Y =Yg
where Xs (Xpr) and Y (Yyr) denote the quadrature compo-
nents for the signal (meter). We will use conventionally X
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FIG. 1. Simplified diagram of the repeated BAE system (top).
Bottom: detail on the first BAE setup. The pump is injected
and extracted by dichroic mirrors. WP, are half-wavelength
plates aligned at evasion angle.

for the amplitude quadrature which is directly detected on
a photodetector, using the field of the injected (and even-
tually amplified) signal beam as a local oscillator. We as-
sume that the input meters are in the vacuum state. The
parameter f is related to the phase-sensitive gain G by
f =G — 1/J/G. After BAE |, the signal goes to BAE,,
where we have

Xy = X = X,

Xys = Xypo + f2X5 = Xapo + f2X§)

Y§! =Yg = f2a¥yn = Y5 = Y.

i = ¥ = Vi

After this second measurement, the signal field am-
plitude Xg) is still preserved, while the information has
been encoded on X in the first measurement and on
Xjrs in the second one. As said previously, the perfor-
mances of the BAE, device will be characterized by the
transfer coefficient for the signal and meter Ts; and Ty,
and the conditional variance between the signal and meter
beams Vgi/a1 [14]. Then the performances of the whole
QND system will be characterized by three measurements.
First, the conditional variance Vs;/42 between the signal
and meter beams for BAE,, with the BAE, measurement
performed at the same time: this quantifies the ability of
the device to operate with an input which has already
phase-dependent noise. Second, the conditional variance
between the final output signal and the first meter beam
Vs2/m1 will quantify the nondemolition property of BAE,,
since the QSP property of BAE, has already been charac-
terized by Vsi/s1. Third, the correlation between the two
meter outputs Cysipr2 Will quantify the degree of correla-
tion [17] of the two successive measurements, i.e., the fact
that “the needles move together” since they are measuring
the same quantum signal.

Each BAE apparatus (see Fig. 1) is constituted by two
type-II KTP crystals sandwiched between half-wavelength
plates WP; aligned at the evasion angle. The crystals
are pumped by a frequency-doubled mode-locked and
Q-switched YLF laser. The pump beam at 527 nm
consists of 35-ps-long pulses with a repetition rate of
76 MHz modulated by a Gaussian train envelope of
400 ns long (FWHM), produced at a repetition rate of
800 Hz. A small part of the fundamental laser beam
injected collinearly to the pump constitutes the signal
under measurement. It consists of 630-ns-long (FWHM)
trains of 50-ps-long pulses, synchronized with the pulses
of the pump beam. At the output of BAE, the pump
beam is separated by a dichroic mirror M. After WP,
a polarizing beam splitter (PBS,) allows one to separate
the meter and the signal. The meter is detected by the
photodetector PhD; and the signal is recombined with
the pump beam by a mirror M, after the selection of
the evasion angle through WP3. At the output of BAE,
the pump is filtered; WP, select the evasion angle and a
polarizer beam splitter allows the separation of the signal
and the meter as in the previous case.

(2)
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The signal and meter beams are focused (FWHM =
200 wm) in a 500-um-diameter InGaAs photodetector
(Epitaxx ETX-500) with nominal efficiency of about 95%
and low dark current. Optical saturation of the photode-
tector is avoided by limiting the optical gain and by adjust-
ing the incident intensities. In order to reduce the thermal
noise, the photodetectors are charged to 500 2, and a coil
system allows the impedance to be transformed to 50 )
to be matched to the following electronic elements. The
photocurrent is split 90/10. The 10% portion is used for
the measurement of the 76 MHz modulation of the mode-
locked train and provides a direct intensity reference. This
is done by demodulating the photocurrent at 76 MHz using
as a local oscillator the second harmonic of the 38 MHz
mode-locker RF. A low-pass filter (F, = 10.7 MHz)
restores the envelope with a band of 10 MHz. The 90%
portion of the photocurrent is used for the measurement of
the quantum noise. The noise measurement bandwidth is
determined by a bandpass filter that transmits between 12
and 25 MHz and has 90 dB attenuation outside this range,
preventing saturation of the subsequent low-noise ampli-
fier (Trontech L20B) by the 76 MHz modulation and its
harmonics. This was checked by examining the absence
of any distortion in the temporal profile of the amplified
pulse. The filtered noise is sent into a square-law am-
plifier (AD734) then filtered as previously (low-pass fil-
ter, F. = 10.7 MHz). Since the gain bandwidth of the
traveling-wave parametric amplifier is flat up to hundreds
of GHz, the noise at 18 MHz gives a quantitative mea-
sure of the noise at the modulation frequency. In order to
treat signals more quantitatively, video averaging is pro-
vided by two boxcars following each of the measurement
channels (intensity and noise); the boxcars are triggered by
the Q-switch synchronization from the laser power sup-
ply and their gate width is 10 ns. Each measurement in-
volves 1024 Q-switched trains, averaged by a computer
that received the data from the boxcars. All measurements
are made by registering simultaneously the modulation (at
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FIG. 2. Power noise of the difference (stars) and the sum
(circles) of the meter (M) and signal (S;) photocurrents as a
function of the electronic attenuation of the meter photocurrent.
In squares the difference for two Poissonian beams having the
signal and the meter intensities.
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76 MHz) and the noise (at 18 MHz) for the output beams.
The pump beam is dilated to 1.25 times the signal beam and
the confocal parameter is 4.3 m for the pump and 1.4 m for
the signal. This prevents the geometrical and diffraction
effects from degrading the nonclassical performances [18].

In Fig. 2 we present the difference (stars) and the sum
(circles) between the signal and the meter quantum noise at
the output of QND as a function of the attenuation of the
meter photocurrent output. The difference of the quantum
noise between two Poissonian beams having the signal and
the meter intensity is also presented (squares). The curves
are normalized to the signal input quantum noise. When
the electronic phases are adjusted to 0° (sum) and 180°
(difference), the measured noise powers are

Vineas = ng[l + ggl‘/}(\)/[m/vgm
+ 28l CHIVE/ V2T, (3)
where V§"' and Vj'' are the signal and meter output

noise powers, ge; is the electronic gain or attenuation of
the meter, and C9y; is the normalized correlation [17]
between the signal and the meter. The minimum of the
“difference” curve as a function of the attenuation of the

meter, obtained for g¢; = |Coy (V™ /VrHY2 is Vipin =
v (1 — |C$1?) which is nothing but the conditional

variance [14].

The curve of Fig. 2 has been obtained for a gain of the
amplifier set to G; = 2. The first remark is the impor-
tant correlation between the signal and the meter outputs,
as shown by the gap between the “sum” and difference
curves. Furthermore, for an attenuation of the order of
7 dB, the difference goes to 1.8 dB below the shot noise
demonstrating a conditional variance Vgj/); = 0.66 or
1.8 dB below shot noise. For high enough attenuation both
curves go close to 0 dB, showing that QND, adds no noise
to the signal. The transfer coefficient for the signal and
the meter measured in a separated way gives Ts; = 0.94
and Ty = 0.4, or T, + Ty = 1.34, which is clearly
in the nonclassical domain (7's; + Tu > 1). The mea-
sured values for the conditional variance Vs 1 and the
transfer coefficients Ts; and Ty are in good agreement
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FIG. 3. Same as Fig. 2, but with M, as the meter and S, as
the signal.
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FIG. 4. Same as Fig. 2, but with M, as the meter and S, as
the signal.

with the theoretical predictions (Vgi/p1 = 0.65, T =
0.95, Ty = 0.34) for meter and signal propagation effi-
ciencies nf,,mp = n;’“’" = 0.95.

The output signal is sent to QND, whose amplifier
gain is G, = 1.9. We present in Fig. 3 the difference
(stars) and the sum (circles) of the signal and the
meter outputs of QND,, together with the difference
for Poissonian beams of equivalent intensities (squares).
The general behavior is similar to that of Fig. 2. The
inferred conditional variance Vgsy/y2 = 0.8 or 1.0 dB
below shot noise is less than that obtained for QND, but
still clearly in the nonclassical domain. This degradation
of the performances of QND, could be attributed to its
lower gain and to some residual depolarization effects.
Figure 4 represents the equivalent curves for the signal at
the output of QND,, given the first meter measurement.
This shows again a conditional variance Vgz/p1 = 0.66
or 1.8 dB below shot noise, demonstrating that the final
signal output is still strongly correlated with the first
meter. Furthermore, the measured correlation between
the two meter outputs is Cys12 = 0.3, demonstrating that
the successive measurements are also strongly correlated.
This value is in good agreement with the measured
correlations between S1 and M1, between S2 and M2,
and the transfer coefficients

Cumim2 = Csim1Csoma/NTs1Ts2 = 0.29. “

This completes the demonstration of the QND principle.
The aim of the QND measurement is to monitor a sin-
gle observable, keeping it unspoiled by the fluctuations
due to the coupling between the system and the measure-
ment apparatus. An irrefutable test of the QND principle
is given by the ability of the system to provide identi-
cal results in repeated measurements beyond the standard
quantum limit. We have developed two BAE setups hav-
ing equivalent performances. When operated in series,
the final output S, is strongly quantum correlated with

both measurement channels (M; and M,), which are also
correlated between themselves. This experiment clearly
demonstrates the QND principle and opens also interest-
ing perspectives for quantum processing of information
insensitive to losses.
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