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Problems with the Standard Semiclassical Impact Line-Broadening Theory
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In this work we study in detail the Ne VII 2s3p-2s3s singlet line, which was also the object
of a recent experiment. The standard perturbative impact theory predictions are tested against a
fully nonperturbative semiclassical impact calculation, taking into account dipole and quadrupole
interactions. Potentially very significant problems with the standard perturbative theory are encountered
and discussed, and a simple remedy is proposed.

PACS numbers: 32.70.Jz, 32.30.Jc, 32.60.+i, 52.70.Kz

The calculation of plasma-broadened line spectra pro-
vides a very useful diagnostic tool and additionally is a
necessary ingredient for large-scale computations in as-
trophysics and plasma physics. A major cornerstone, re-
ducing the many-body problem of line broadening to the
computation of one-body quantities, is the impact approxi-
mation [1,2]. For practical calculations, the impact theory
is usually employed in its perturbative version, and even
then simplified formulas are often used.

Isolated lines [2], by being relatively simple and usu-

ally unaffected by ion microfield effects, whether static
or dynamic [3] are an excellent testing ground for the
theories of electron collisional broadening. Such tests
require reliable experimental profiles, and much progress
has been made in this direction in recent years mainly
by the Bochum group [4—10]. These studies have
revealed significant discrepancies with simplified ex-
pressions that are often used for the electron collisional
broadening [2,11—14].Furthermore, serious discrepancies

with close-coupling (CC) calculations [15] were found
in [5]. Even more impressive is a recently obtained
factor of 2 discrepancy between CC calculations [15]
and experiment [10], for a line and parameter range
where CC should be at its best. In both cases, much
better agreement (roughly by a factor of 2) is obtained
by semiclassical (SC) calculations. This means that SC
calculations are in fact the best available today, in the
sense of giving agreement with experiment.

At the foundation of any sophisticated [3,16—20] SC
perturbative calculation is the requirement that unitarity
is not violated. This is important, of course, since
unitarity violation can lead to a serious overestimation
of the width [17,21]. Unitarity is preserved for over
30 years by using a criterion, thought to be both necessary
and sufhcient. This "fact" has gone unchallenged over
this period of time. Hence, a minimum impact parameter
p;„(v) is determined, such that unitarity is satisfied
for larger impact parameters, by numerically solving the
equation

t'ai f ~ V~~((ri) dr) f '
~ dry V~(~(rp) + +bi f ~ Vbbi(ri) dri f '

~ dt2 Vblb(tp)
h~

where f. J denotes an angular average, V' denotes the SC
[1] emitter-perturber interaction in the interaction picture,
a and b denote upper and lower level states, respectively,
a' and b' denote a complete set of states that perturb a and
b, respectively, and d is a number less than or equal to 1.
The condition d = 1 is sufficient to preserve unitarity,
but to keep the expansion parameter small, frequently
d = 0.5 is also used [19]. Often, the real part of the
left-hand side of Eq. (1) is substituted for the absolute
value sign, because the imaginary part is usually much
smaller. The test in Eq. (1) is then carried out using the A
function [2,3,18] for which analytic expressions have been
recently given [22]. Thus, one hopes that perturbation
theory is reliable for p ) p;„(v) and that this region
gives the dominant contribution, so that one may either
neglect or estimate very roughly the unknown (within a
SC perturbative framework) p ( p;„(v) contribution. In
this work, we demonstrate by means of a specific case that

checking unitarity in this manner is not sufficient and the
error associated with the breakdown of this test can be
substantial.

The main problem of the impact approximation has al-
ways been the so-called strong collisions, i.e., the col-
lisions at small impact parameters p ~ p;„(v). It has
been known for a long time that the contribution of such
collisions can be bounded, but usually some fraction of
this bound is then used as an additive contribution to the
width. Whereas for, say, large-scale computations, return-
ing a single value for the width is desirable, for detailed
comparisons with experimental results it is best to return
an error bar for the contribution of these strong collisions,
which cannot be computed reliably. This is the approach
adopted here [3]. In other words the theoretical width lies
between the weak collision width [p ) p;„(v)], which
is presumed to have been reliably computed by the usual
perturbative (PR) treatment, and the sum of the weak

3406 0031-9007/95/75(19)/3406(4)$06. 00 1995 The American Physical Society



VOLUME 75, NUMBER 19 PH YS ICAL REVIEW LETTERS 6 NovEMBER 1995

and strong I p ~ p;„(v)] collision widths. Sometimes
these bounds were satisfactory [3], while other times [7]
they were rather too large and reducing them would be
desirable.

Although one loosely speaks of small impact parame-
ters and/or small velocities as giving rise to strong col-
lisions, it is important to distinguish between collisions
that fall into this group because unitarity is violated as
the perturbation expansion fails and collisions that fall
into this group because the SC approximation is no longer
valid. Whereas there is no way within the SC approxima-
tion to avoid the latter, the collisions that violate unitarity
are still treatable within the SC impact approximation, by
means of a nonperturbative (NP) approach. There are es-
sentially two such known NP approaches. The first one is
an analytic solution under the approximation of neglect-
ing time-ordering effects, while the second [23] is a fully
numerical solution of the Schrodinger equation. To avoid
ambiguities, we have chosen the second approach here.

Thus, if the p;„(v) required to satisfy unitarity is signifi-
cantly larger than then p;„(v) required to preserve the SC
approach, as is very often the case [6—10] a NP calcula-
tion achieves a very significant reduction of the error bars
given by the PR calculation.

As a reminder, the half width at half maximum
(HWHM) is written as [18]

HWHM = 2nn p dp dv vf(v)Q(p v), (2)

where n is the electron density, f(v) is the Maxwellian
velocity distribution, and Q is given by

Q(p, v) = tI —S,(p, v)Sb (p v)) (3)

where the subscripts a and b denote the upper and lower
levels, respectively, I is the unit matrix, 5 is the 5 matrix,
and [ .) denotes angular average. When one formulates
the problem on the collision axes, one finds for isolated
lines [18]

Q(p, ) =(2J. + 1)-' (JbmblM I J,m,')(JbmblM I J,mg)
/

IM, m„,m„,mb, mb

&& [& „, ;~ ., „—(J.m.' I &,(p, v) I J.m. )(Jbmb 15'.(p, v) I Jbmb)*l,

where the subscript c denotes that the 5 matrix has been
computed for a given direction of the perturber trajectory
(collision axes).

For ion lines, the trajectory is parametrized in terms of
the "time" variable u, defined by [3,18]

$(E Slnh[B] B)/V, (5)
with s = Z, e /477Eomv and with the eccentricity E

v'1 + (p/~)'.
All calculations described in this work refer to the sin-

glet 2s3p-2s3s Ne VII 3643.6 A line, which has been the
subject of a recent experimental study [9]. The combi-
nation of available experimental data and the fact that
broadening is determined by a small set of three lev-
els makes this line suitable for illustrating the impor-
tant points. We first give an example of a pure dipole
calculation. When we calculate Q(p, v) for a veloc-
ity of 2 X 10 m/sec and an impact parameter of 5 A
(e = 1.653), the PR result is Q(p, v) = 0.05108, and is
in good agreement with the NP result of 0.04997. This
is understandable, since Q(p, v) is small (= 0.051 08), so
the perturbation expansion should be accurate. But when
we attempt the same calculation for an impact parame-
ter of 0.68 A (e = 1.0158), which also has a relatively
small expansion parameter of Q(p, v) = 0.16, the NP re-
sult is 0.0868. Figure 1, which shows the real part of
JtI —U, (u)Ub (u)j versus the "time" variable u, illus-
trates what has happened: If the U matrices remain close
to the unit matrix, then the perturbation expansion is cer-
tainly valid. This is the case of the solid line, which rep-
resents the larger eccentricity. However, we may get a
small Q(p, v) without this being the case, as is demon-

strated by the dashed line, which represents the smaller
eccentricity. In other words, it is only for small times
(or u) that the U matrices evolve according to pertur-
bation theory in the smaller e case. Consequently, the
unitarity criterion is insufficient and the NP result is sub-
stantially different from the PR one. We note the fiat
initial and final regions for both cases in Fig. 1, which
show that the U matrix has indeed converged to the
5 matrix.

Nevertheless, the PR and NP HWHM for a dipole-
only interaction turn out to be close: 0.535 vs 0.5094 A,
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FIG. 1. Real part of (I —U, Ub ) vs u. The solid and dashed
lines correspond to a NP calculation for v = 2 X 106 m/sec
and p = 5 and p = 0.68 A, respectively.

3407



6 NOVEMBERETTERSPH Yg JC AL RFV&E

evels and more perturbingmore andogressive y

j ole term
ls come int p '

h but wjth the djpure4 is a simjlar graph
trong collisionlt shou ld be noted

l interactionure diPo e inaller p «r P
ade about

to sm
The remarksjs ~~creased.

. „3 3d channe»
the veloc' y ', .

1 hydrogenicof the "near yportance o

rofile,
true.

e proith eg
a~erage ' y) .

deter
erature ave

ortant in e er-;mpact param
f the strong

ole calculation.
o ed to error

adrupo'
477 A as opp'"

h the cal
erro~ .

Np result~
ar «0-

for whicA for the
3p- Plations involvi g

3 3d and 3d3d q
A

and (c) a 3J 31 '

g5 0.977 an( 0.9
-3d,

H~HMs of 0. .
'9] 0 &65 A). It

ann
Th experimenta

ts for about

nels yield
I result ts [spectiv yel. ( e

accounh that t e s-
di ole intera

3~ 3d charm
.

t action)
s notewort y

. including the P
ults in a

of the total (t.e
d 3d channel rwhereas the 3„o ic width

NUMBERVOLUMF- 7~

1 g4 'l~f

0,8 1)G9

0,6

0,4

0,2

tT r
l

l & & & II I I i sI i i II I0
0,8 1 1,2

II I t
)

I I I I I I
I

I I I

ran be seena reemen«an
ch anne

reason for thts g
d Np (dashed

respective y. ' "'
PR (solid lin. ) "

d fferent 'gv~ are shown
t the average ve o

re im

line) Q(~ ' .
mind that

~ .
Keeping n

wh the i
. jf

d fferences
velocities,

t is clear w y
- Th main ori

m sec, '
small: e

1S 2.9 && 10 m ~

lculations are sm:
PR the ™en the PR

eak collision
still h

omes from wea
ent.

Contribution
ns are in good agreem

here W
d NP calculatio

e case w
an

om
' '

comes from sm cribution
ns uni ar

th
s an ve . n

arame ert s compare
parameters

lar er impact p
iated, often reg

col

broadening

p
d

In [20] t ts a
including t eh criterion was a

ls. Althoug adia onal channe s.
d agonal func i

enic" nondia o
tions exist

re
the rele vant non iag

o b en develop ed for t ese
1

1able to determine w iso, in o
u b included in e

hydrogenic
els shoul e

ere the near

d However h 3
cony ia

the 3s-
d l8]. Figure s othis is often neglecte

drupole calculationsof ure qua r
the perturbatlve gbasically tw

ificant di eren
nd because per

a sign
or not. n

makes no idifferenced 3d 'h'nn'1
collision

is valid, the 3
in the strong co i

theory is

dd't"n f th
results. i

3d-3d c annand the a i
in a pea ra

regime,
t differenc,f ce resulting

e move oto smaller
po ta

This result con rma trough. i

Q22—

O. I 8—

0,5

O. I 0—

006— I0 '' I

0,8 1,6 1,8
0.02—
0.0-

0

FIG. 2. Q(p, v)
and dashed lines
calculations.

3408

I

5
I I

I 2

P (A)

The solidelocities v.
represent, respec

a)dru ole interaction.

dashed lines correspo
all, all except the —, t e

Th d h-dott d
-3 channe .

channels, respec s . e
PR calculation d oincluding o



VOLUME 75, NUMBER 19 PH YS ICAL REVIEW LETTERS 6 NovEMBER 1995

t4 I I
I

I I I
I

I

1,2

I
I

I I ~
I

I ~ I

(a)

0,8

0,6

a

0 « I

0,8

8
r

I I I I I I I I i I I I

1 1,2 1,4
p{A)

J~~ I I

1,6 1,8 2

y2 i ~ I t s & I ~ s i I s ~ e
I i i i

I
s & ~ I t ~

W

tional information and could be implemented by evaluat-
ing, at intermediate times, the function (I —U, Ub ) to
ensure that it is monotonic. One possible implementation
of this could involve using an upper limit of the t~ inte-
grations of 0 rather than ~ in Eq. (I); this check would
allow the diagnosis of the situation shown by the dashed
line in Fig. 1. Even without any additional checks, it is
still much better to check than not to, since for large im-
pact parameters, the unitarity check is reliable.

Further, it has also been demonstrated that to the
extent that quadrupole interactions are important, it is not
always sufficient to include only the diagonal quadrupole
channels. An analytic solution to the problem of strong
collisions is the subject of current research.
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FIG. 4. Q(p, v) vs p for dipole and quadrupole interactions.
(a) v = 2 X 10 m/sec, (b) v = 3 X 10 m/sec. The solid,
dotted, and dashed lines correspond, respectively, to NP
calculations including all dipole channels and, respectively, all,
the 3p-3p and 3s-3d, and the 3p-3p only quadrupole channels.
The dash-dotted line is a pure dipole NP calculation.

decrease of the total electronic width by less than 0.5%.
These results thus demonstrate the need for analytical
approximations of the relevant nonhydrogenic quadrupole
broadening functions [24], which should then be included
in existing codes. These results (with their error bars)
are absolutely rigorous (within the number of states
used), if one trusts the "demarcation line" between what
may and what may not be treated semiclassically, and
for which the convention in [3] was adopted. It is then
interesting that even for this case, where relatively low
partial waves are involved, i.e., under conditions not
most favorable for SC, good agreement is obtained.
Furthermore, the effects described here were responsible
for the seemingly excess broadening observed in Ne
V111 [5] for which NP calculations give an electron
FWHM contribution between 0.9 and 0.13 A, with the
latter number corresponding to the (unlikely) maximum
possible contribution from nonsemiclassical collisions,
compared with an experimental result of 1.2 ~ 0.1 A
at the highest density considered.

In summary, we have demonstrated that the standard
practice of even the most sophisticated current perturba-
tive impact theory calculations cannot enforce unitarity
reliably and that a more reliable verification of the uni-
tarity is essential ~ Such a procedure would involve addi-

[1] H. R. Griem, Plasma Spectroscopy (McGraw-Hill, New
York, 1964).

[2] H. R. Griem, Spectral Line Broadening by Plasmas (Aca-
demic, New York, 1974).

[3] S. Alexiou, Phys. Rev. A 49, 106 (1994).
[4] F. Bottcher et al. , Phys. Rev. A 3S, 2960 (1988).
[5] S. Glenzer, N. I. Uzelac, and H. J. Kunze, Phys. Rev.

A 45, 8795 (1992); in Spectral Line Shapes, edited by
R. Stamm and B. Talin (Nova, New York, 1993), Vol. 7.

[6] S. Glenzer, J.D. Hey, and H. J. Kunze, J. Phys. B 27, 413
(1994).

[7] S. Glenzer, in "Spectral Line Shapes, " edited by D. May
and J. R. Drummond (AIP, New York, to be published),
Vol. 8.

[8] N. I. Uzelac et al. , Phys. Rev. E 47, 3623 (1993).
[9] T. Wrubel et al. (to be published).

[10] S. Glenzer and H. J. Kunze (to be published).
[11] H. R. Griem, Phys. Rev. 165, 258 (1968).
[12] M. S. Dimitrijevic and N. Konjevic, J. Quant. Spectrosc.

Radiat. Transfer 24, 451 (1980).
[13] J.D. Hey and P. Berger, J. Quant. Spectrosc. Radiat.

Transfer 23, 311 (1980); J.D. Hey et al. , J. Phys. B 23,
241 (1990).

[14] H. R. Griem, M. Blaha, and P. Kepple, Phys. Rev. A 19,
2421 (1979).

[15] M. E. Seaton, J. Phys. B 21, 2033 (1988).
[16] H. Griem et al. , Phys. Rev. 125, 177 (1962).
[17] S. Alexiou and Y. Maron, J. Quant. Spectrosc. Radiat.

Transfer 53, 109 (1995).
[18) S. Sahal-Brechot, Astron. Astrophys. 1, 91 (1969).
[19] S. Sahal-Brechot, Astron. Astrophys. 2, 322 (1969).
[20] S. Alexiou and Yu. Ralchenko, Phys. Rev. A 49, 3086

(1994).
[21] S. Alexiou, Weizmann Institute of Science Report

No. WIS-94/ I/JAN. -PH, (unpublished).
[22] S. Alexiou, J. Quant. Spectrosc. Radiat. Transfer 51, 849

(1994).
[23] M. E. Bacon, K. Y. Shen, and J. Cooper, Phys. Rev. 1SS,

50 (1969).
[24] S. Klarsfeld, Inst. Phys. Nucl. Orsay. Report No.

IPNO/TH 71-42, 1971 (unpublished).

3409


