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Absolute Calibration of Electric Fields Using Stark Spectroscopy
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We have established a direct link between laboratory electric fields and the atomic constants using
Stark spectroscopy on n = 15 sublevels of "Li, coupled with an R-matrix theory of the Stark effect.
Measurements are made with frequency-stabilized laser excitation by scanning the field from zero to

above the saddle point.

To estimate the zero-field energies we use quantum defect parameters from

the polarization model for / = 4, and a fit to all available spectral data for [ = 3. We claim that the
electric field is known to about =2 ppm =5 mV/cm. Improvements and extensions are discussed.

PACS numbers: 32.60.+i, 31.15.-p, 32.10.Dk, 41.20.—q

It should be possible to calibrate a static electric field
to the accuracy of the relevant fundamental constants, but
previous efforts have not been able to do this. The accu-
racy has been limited by the theory of the Stark effect in
atoms, except for hydrogen (precision electric field exper-
iments on single particles are impractical). By contrast,
accurate calibration of magnetic fields by NMR, ESR, and
other resonance methods is straightforward because the
lowest order magnetic interaction often derives from the
inherent dipole moment of fundamental particles. Mag-
netic fields acting on such particles produce a torque in-
stead of a force, and the resulting precession frequency
(energy shift) can be measured to high precision with res-
onance methods. The Schrodinger equation for this mag-
netic interaction is separable in spherical coordinates so
the dipole moment can easily be calculated to first order.
When combined with measurements, this provides accu-
rate calibration.

Excited states of hydrogen have electric-field induced
energy shifts that are calculable to high accuracy (the
Schrodinger equation is separable in parabolic coordi-
nates). Although accurate Stark experiments in H have
been demonstrated [1-3], ppm accuracy has not been
reported, due in part to experimental difficulties (disso-
ciation of Hy into H atoms, excitation, high speed re-
sulting from small mass). Alkali atoms are more easily
handled experimentally, but the central potential is not
precisely 1/r so the Schrédinger equation is not sepa-
rable. The problem of alkali atoms in an electric field
has been addressed previously by notable theoretical ef-
forts [4,5]. The most precise electric field calibration to
our knowledge was performed on He atoms, using these
same theories, and achieved error limits of =50 ppm [6].
In this Letter, we present results showing corroboration
between experiments and a newly developed R-matrix
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technique [7—-9] to approximately 2 ppm in field, whereas
the older methods are inaccurate by significantly larger
amounts. The agreement is good enough to allow direct
measurement of electric fields in terms of the fundamental
constants.

Some years ago, extraordinarily sharp features in the
Stark spectra of Rb associated with interference narrowing
were found [10-13]. We [14] attempted to use these
narrowings for a field calibration. Unfortunately, the
measurements exhibited inconsistencies several hundred
times larger than their internal precision [14]. After
exhaustive studies of both the measurements and the
theories used to interpret them, we changed from Rb
to Li because of its much simpler electron core (no p
or d electrons). When this change failed to resolve the
discrepancies, we sought improvements in the theory.

The theory of the Stark effect in nonhydrogenic atoms
presents a special type of nonseparable partial differential
equation for the outer electron. The core region must be
effectively excised from the solution since it constitutes
a many-body problem. Outside the core itself, there
is an effective potential (leading term r~%) caused by
the polarization of the core by the outer electron. At
sufficiently large r, core effects and also the major
part of the relativistic mass correction term can be
expressed to a high degree of accuracy by means of
[-dependent quantum defects determining phase-shifted
Coulomb wave functions.

The three theoretical methods we have tried each
addresses this problem in fundamentally different ways.
In the matrix diagonalization method [4], the electric
field is treated as a perturbing element in a basis set of
zero-field spherical eigenfunctions for various n, [ states,
with energies given by a quantum defect expansion. This
method is necessarily truncated because only bound states
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are included in the basis set. In the frame transformation
method [5], WKB wave functions in parabolic coordinates
are used for the outer region. Even after we modified
it by using numeric wave functions, however, we found
only small improvement in comparisons with experiment.
In the R-matrix method [7-9], the phase-shifted spherical
wave functions at small r are matched with eigenfunctions
of the hydrogenic atom plus electric field at large r.
The eigenfunctions are computed as combinations of
spherical coordinate Sturmian functions, which provide
great flexibility in meeting the boundary conditions as
well as the desired long-range behavior. The application
of this new method to our Li data has produced a high
level of consistency.

The R-matrix theory splits space into two regions
separated by a spherical surface of radius a. By choosing
a large enough (we have used up to a = 20 a.u.), one
ensures that for » > a, the r~% polarization potential
and other core effects are negligible and thus that the
potential is nearly exactly Coulombic. However, the wave
functions are not hydrogenic because of core-induced
phase shifts. Following recently developed procedures
[7-9], we first consider the inner region, and express its
solution at r = a in surface terms [15] related to phase-
shifted Coulomb functions, to incorporate information
about the region r < a into the outer problem. To
achieve the level of accuracy needed here, we take into
account effects of the external field in the inner region
by adding surface terms off-diagonal in [/ caused by field
mixing. The solution in the outer region is written as a
sum of 800 to 2500 Sturmian functions with an optimized
scaling parameter. In order to compute the properties
of the resonances, especially above the saddle point,
we use the “complex coordinate method” (or complex
rotation of the Hamiltonian) so that the eigenvalues are
made complex and the eigenfunctions square integrable.
Finding the resonances at constant energy and at various
field values then reduces to a generalized eigenvalue
problem, which we solve using the Lanczos algorithm.

Our best field calibration results were obtained from
direct spectroscopic measurements because we now use
cw lasers. We have observed interference narrowing, but
that technique is best suited to pulsed lasers in view of
their inherent temporal resolution. We used two diode
lasers to excite stepwise in a dc electric field from the
22S ground state via 22P3;; to the 325 state, and then
a polarization-stabilized HeNe laser to excite Rydberg
levels [16,17]. The HeNe laser is linearly polarized at
45° from the static field axis, so that both m = 0 and
m = *1 states can be excited (the latter states being
degenerate). Data were obtained by scanning the electric
field between two charged plates to shift the Stark levels
into resonance with the HeNe laser frequency. The
population of Rydberg atoms was measured by collecting
ions through a slit in the bottom field plate, amplifying
this signal with two microchannel plates, and counting

the pulses. Figure 1 shows data from a typical scan
superimposed on a plot of energy levels of Li in an
electric field.

Since we use no pulsed field to aid the ionization, the
voltage applied to the electrode plate can be quite stable,
thus facilitating precision measurements. A Keithley
model 196 DVM (0.83 ppm/h accuracy) was used with
a voltage divider to measure the top plate’s potential,
and the field was scanned by changing the bottom
plate’s potential from O to 10 V. This divider was
made of five 20 M and one 30 k) Caddock MG815
resistors (0.01 ppm/V accuracy). The scanning voltage
was measured with the same voltage divider so that only
one calibration factor is involved. Further details of the
experiment are given in Refs. [16—18].

Resonance peak positions below and above the saddle
point were measured. Above the saddle point, there is
considerable field ionization broadening, so that most m =
0 resonances were nearly 1 V wide. However, [m| = 1
peaks are narrower because there is less core overlap
and hence less core-induced coupling to continuum states.
We determined the center location of each resonance by
fitting a Gaussian to each ionization signal peak. This line
shape closely approximates the experimental line shape, a
Doppler broadened convolution of the natural and laser line
shapes with typical linewidths of about 30 MHz. A typical
photoionization signal obtained in a scan over a single peak
is shown in Fig. 2. The experimental data in Fig. 2 exhibit
some asymmetry caused by small drifts in the high voltage
power supply and in the laser frequencies, and therefore
the indicated uncertainty in the resonance position will be
seen (below) to be too low.

To translate our theoretical results into laboratory units,
we use the atomic units of energy and field obtained
from the fundamental constants. For R., two recent
experimental results [19] are far more accurate than we
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FIG. 1. Data obtained from a scan at £y, = —483.06 cm™!

excitation energy from 0 to 9 kV/cm overlaid on a plot of
Li energy levels. Solid lines and dashed lines denote m = 0
and |m| = 1 levels, respectively. Resonances appear when a
sublevel is shifted to energy Ey;. The saddle point energy is
denoted by dots.
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FIG. 2. Data from a scan over an individual resonance peak
together with the fitted Gaussian function. The fitted resonance
voltage and error bars are also shown. The data acquisition
time for this scan was 10 sec.

need (1:10'), and for the field we use F» = €2/a. =
5.1422083(16) X 10° V/cm, where a. = a /47 Rw. For
the Rydberg electron of an atom with atomic mass My,
the atomic unit of energy is 2psR. and the atomic
unit of field is pf‘Foc where pg =1 — m./M, (m, is
the electron mass). For "Li, p = (1 — 7.82) X 1077
and thus R4("Li) = 109728.73534 cm™! and F4("Li) =
5.1414042(16) x 10° V/cm.

In addition to the constants, the Stark theory also needs
accurate zero-field energies for Rydberg levels. We use a
quantum defect (QD) expansion as defined in [20]. Zero-
field energies are given by E(n,l) = —R,/[n — 8(DT?,
where

P 84
= sF  [n - s0F

For [ = 4-14, QD parameters may be obtained from the
polarization model [21] (including relativistic terms) that
has been corroborated to a few kHz [22] by microwave
experiments on n = 10, [ = 4-6. For [ = 3, we obtain
QD parameters from a fit to the available Li spectral data
[22-28], which consists primarily of optical and IR mea-
surements on low n levels and microwave measurements
on high n levels. Fine structure parameters were fit but
were not used in the present theory because their effect on
the observed n = 15 levels was not significant. A simulta-
neous fit of 140 transition frequencies to 20 QD parameters
(set “A”) for %S, 2P, 2D, and 2F manifolds gave the low-
est variance (rms ratio of residual to experimental error)
of 2.8 while a fit to 16 QD parameters (set “B”) yielded
a variance of 9.1. The impact of uncertainties in the QD
parameters on the field calibration is discussed below.
R-matrix calculations are performed at two energies
near the excitation energy estimated from the HeNe fre-
quency. The 29 resonance field values from the data
scans are fit to these calculations by varying this energy
Ey, the effective plate spacing d, and a small voltage off-
set Vo. The last two parameters give the field from the

(1) = 8o + (H
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measured voltage. The Stark shift of the 32S state, calcu-
lated by matrix diagonalization, R-matrix theory, or from
the recently published polarizabilities [29] (the different
methods agree to 0.2%), is included. The residuals be-
tween the R-matrix calculations and the results of these
global fits are plotted in Fig. 3. The scatter is greater
than the error limits for individual resonances because of
small drifts in our voltage source and in the laser frequen-
cies. From this fit, the uncertainty in the plate spacing
and hence in the field is 1.5 ppm, while the uncertainty
in the energy is 1 MHz. From various convergence tests,
we believe the R-matrix calculations to be valid to about
0.1 ppm in field, but the effect of uncertainties in the zero-
field energies and QD parameters must be considered.

The R-matrix method cannot easily accommodate the
small quantum defect parameters for / = 8 that arise
from the relativistic mass correction term, E.;, and the
polarization potential [21]. These phase shifts accumulate
primarily in the region » > a. Although we were obliged
to neglect these shifts, we find that the average energy
shift from these omitted quantum defect parameters is
mostly canceled (to =1 MHz) by the positive energy
shifts from the n~* part of E..;, which is not included in
the QD shifted energies [30]. The net effect on the fitted
effective plate spacing is only =0.4 ppm.

The effect of uncertainties in the / = 3 QD parameters
is indicated by two tests. The difference in the fitted field
calibration obtained from QD parameter sets A and B
was 0.4 ppm. Varying the parameters in each set to the
error limits of the respective fits, produced a change of
=~(.1 ppm in the fitted value of d.

Taking into account these small corrections, we claim
a calibration of laboratory electric field in terms of
atomic constants accurate to about 2 ppm plus an un-
certainty of 5 mV/cm from V. This method does not
depend on detailed knowledge of experimental geometry
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FIG. 3. Residuals from a fit of 29 measured resonances to R-
matrix calculations. The m = 0 (open circles) and |m| = 1
(closed circles) data were fit together. The calibration param-
eters obtained from the fit are d = 0.723717 6(10) cm, offset
voltage, Vo = 0.294(4) V, and E; = —483.060778(30) cm™!.
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or laser frequency, but does depend heavily on theoreti-
cal accuracy.

This level of precision in the measurement of an electric
field raises other possibilities. If the experiment were per-
formed with a stabilized HeNe laser of known frequency,
the binding energy of the Li 325 state could be determined
to within =1 MHz by adding the laser energy and the fitted
upper level energy. This could be used to test calculations
on relativistic and QED effects in Li, since the nonrela-
tivistic energies are accurately known [31]. If an indepen-
dent measure of the effective plate spacing could be made
to comparable precision, including contact potentials, do-
main differences, etc., then one would have a measure of e,
the charge of the electron (assuming a Josephson junction
measure of the voltage). We believe the theory is capable
of 0.1 ppm accuracy and that the experimental technique
could be extended to this level with the help of a stabi-
lized voltage supply and better frequency-stabilized lasers.
However, it may be that hydrogen atoms would be more
suitable for a determination of e.
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