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Breaking Cosmic Strings without Monopoles
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It is shown that topologically stable cosmic strings can, in fact, appear to end or to break, even in

theories without monopoles. This can occur whenever the spatial topology of the universe is nontrivial.
For the case of Abelian-Higgs strings, we describe the gauge and scalar field configurations necessary
for a string to end on a black hole. We give a lower bound for the rate at which a cosmic string will
break via black hole pair production, using an instanton calculation based on the Euclidean C-metric.

PACS numbers: 04.70.Dy, 11.27.+d, 98.80.Cq

In the absence of singularities or monopoles, local
cosmic strings cannot end, and, hence, must either be
infinite in extent or form closed loops. It is the purpose
of this Letter, however, to point out that if the topology of
space is nontrivial, then local cosmic strings may appear
to end. In particular, a cosmic string may disappear
down the throat of a black hole. Moreover, when
topology changing processes are included (as suggested
by quantum gravity) a cosmic string can appear to break.

In a functional integral approach to quantum gravity,
the leading approximation to such a topology changing
process is given by an instanton, or solution to the Eu-
clidean field equations, which interpolates between the
initial and final spacetimes. The semiclassical approxi-
mation to the rate is then simply related to the Euclidean
action for the instanton. One such process, in which a
cosmic string splits, with black holes appearing at the two
ends, can be described approximately by a gravitational
instanton based on the charged C-metric. (This has been
previously noted by Gibbons [1], though not the argument
which follows below about how the gauge field behaves. )

The Lorentzian charged C-metric describes a pair of
charged black holes accelerating away from one another
along a symmetry axis [2], say, the z axis. The C-metric
then has conical singularities on the z axis characterized by
a deficit angle 6;„on the inner part of the axis, between the
two black holes, and deficit angle 6,„,on the outer parts of
the axis, extending from each black hole out to z = ~~.
These conical singularities may be removed by introducing
a background magnetic field [3] of the appropriate strength
to provide the force necessary to accelerate the black holes.
The resulting metric, known as the Ernst metric, has served
as the starting point for calculations of the pair creation
rate for magnetically charged black holes in a background
magnetic field [1,4,5].

In this paper, however, we will work with the C-
metric directly, interpreting the conical singularities as
a model for a thin cosmic string along the z axis. It
has recently been shown that the conical singularity may
indeed be filled in with stress energy corresponding to a
real cosmic string [6]. For positive black hole mass, one

has 6;„(6,„,, implying that the mass per unit length
of the string is greater on the outer axis than on the
inner axis. The corresponding difference in string tension
between the inner and outer axes provides the force which
accelerates the black holes. The parameters of the C-
metric may be chosen so that 6;„=0, corresponding to a
string which breaks completely. [The (nonextreme) black
holes which are produced have their horizons identified
to form a wormhole in space. If 6;„=0, the cosmic
string does not actually break, but simply passes through
the wormhole. ] More generally the string can "fray. *' In
a real cosmic string, the magnetic flux is quantized. If
the string carries only a single unit of Aux, then it must
"break" entirely. If it carries multiple units of Aux, then
it can fray by discrete amounts, corresponding to a given
number of flux quanta.

The Euclidean action for the C-metric is infinite, but the
physical quantity determining the rate of pair creation is the
difference between this action and that of an appropriate
background geometry. As for the Ernst instanton, we
find that this difference is given by a simple geometrical

1
expression [7], AI = —4(Abh + AA„, ), where Abh is the
area of the black hole horizon and AA„, is the area of the
acceleration horizon relative to the background. For small
mass per unit length p, of the string, the relative action
determining the rate is given by

aI = ~m'/(I .„, —p, ;.). (1)

The semiclassical approximation to the rate is then e
We begin by describing how a cosmic string can appear

to end on a black hole. For definiteness, consider the
Abelian-Higgs model coupled to gravity. The matter
fields are a U(1) gauge field A~ and a charged scalar field
4 with a Mexican hat potential. The cosmic string is the
familiar Nielsen-Olsen vortex. In the simplest case, one
unit of magnetic Aux runs along the center of the vortex.
The scalar field far from the string is iIi = v exp(itb),
where v is the vacuum expectation value and 0 ~ @ ~
2' is an angular coordinate around the string. So the
phase of 4 has a unit winding number going around a
large loop linking the string.
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Now suppose the cosmic string enters a black hole.
On a constant time slice, the horizon is topologically a
two-sphere. For simplicity, the natural thickness of the
string will be taken much smaller than the radius of the
black hole. The string pierces the horizon at some point 5
("south pole" ). Take a loop on the horizon around 5 much
larger than the string thickness but smaller than the black
hole. Around this loop, (I) winds once in phase. Deform
the loop and attempt to shrink it to the antipodal point N
("north pole" ). It seems as if there will be trouble because
of the winding number of (I) in phase. But phase is gauge
dependent, and this winding number can be unwound
by a suitable gauge transformation (I)' = U(I), eA'

ed~ + iU B~U, which merely implies that we need a
nontrivial U(l) bundle.

To be explicit, take a gauge patch about 5 on the event
horizon, slightly larger than a hemisphere. Take a similar
patch about N. The two patches are to overlap along a
closed ("equatorial" ) strip. To define a bundle we give a
gauge transformation U on the overlap, to take us from
the 5 patch to the N patch; a nontrivial bundle is defined
by a topologically nontrivial U. To unwind the phase, it
suffices to take U = exp( —iP), where 0 ~ @ ~ 2' is
an angular coordinate ("longitude" ) on the horizon that
runs around the strip. The vector potential can be taken
as A~ = 0 in the N patch, which will gauge transform in
the overlap region into the required vector potential in the
5 patch. This completes the construction.

We have constructed here a field configuration
topologically equivalent to the Wu- Yang monopole
[8]. In the Wu- Yang monopole the magnetic fiux
is spread uniformly over the two-sphere, whereas
here the magnetic fIux is all gathered up and con-
centrated into a narrow fiux tube at S. The U(l)
bundle we have constructed is precisely the well-

known bundle that arises from the Hopf fibration of the
three-sphere.

Now consider possible time dependence. The mag-
netic Aux crossing any closed two-surface is absolutely
conserved, according to a topological conservation law.
Thus the fIux entering each separate black hole is abso-
lutely conserved, and if a black hole terminates a string at
one time, that black hole must always terminate a string.
In quantum gravity, black holes themselves can be created
or destroyed in pairs, and the topological conservation law
simply constrains the total magnetic fIux of both holes to
be zero, while individually the cruxes may be nonzero.
Thus, through the creation by quantum tunneling of a
black hole pair along a cosmic string, the string can break.

The same process can occur in a wide class of theories
that admit local cosmic strings, i.e., in which the vacuum
manifold has a nontrivial ~i. Some such theories will
also admit monopoles on which cosmic strings can end,
and in such theories cosmic strings can also break through
creation of monopole pairs [9]. However, string breaking
by black hole pairs is often allowed, even if the theory
admits no such monopoles; a sufficient condition is that
the unbroken symmetry group be connected [10,11]. [To
see what can happen if the unbroken symmetry group
is disconnected, e.g. , Z„, consider a theory containing a
Higgs field with charge ne, n ) 1, which condenses [12].
If its phase only wraps once around the string, then the
would-be gauge transformation to unwrap it would be
U = exp( —i@/n). However, this is not single valued,
and would, for instance, cause trouble with other singly
charged fields. ]

As discussed in the introduction, the instanton describ-
ing the pair creation of black holes along a cosmic string
is given by the Euclidean C-metric. This metric and
gauge potential V~ is given by

1 ( G(y)dr' dy', , dx
ds + KGxd+

&'(~ —1)'( P~IP)' G(Y) &(~))'

V4) = Kq(x —g4), G(x) = 1 —x —2mAx —
q A x

where 0 ~ @ ~ 27r and 0 ~ r ~ 2'. The function

G(s) has four roots which we shall label

$3 ( $4. Hence the coordinate ranges are s z ~ y
$3 $3 ~ x ~ s 4. The black hole horizon is at y = gz,
and the acceleration horizon is at y = s 3. The inner
strut is at x = $4, and the outer strut at x = s3. Spatial
infinity is at the point where x = y = $3. The black
holes carry magnetic charge q under the unbroken U(1)
gauge field V~. The reader should note that this gauge
field is distinct from the broken gauge field A~, from
which the cosmic string is constructed. The presence
of this second gauge field is required below in order to
construct a smooth instanton.

In the model of a cosmic string by Hat space minus
a wedge, the mass per unit length of the string is equal
to 8/8', where 6 is the deficit angle. In terms of the

metric coefficients, the deficit angle on the outer axis is
given by 6,„( = 2m[1 —(K/2)~G'($3)~], and the deficit
angle on the inner axis is 6;„=2~[1 —(K/2)~G'(g4)~].
Clearly, from the symmetrical form of the metric, there
are also nodes in the ~-y plane for generic choices
of parameters. Unlike the conical singularities along
the axis, these nodes cannot be interpreted as approx-
imations to a smooth cosmic string. Instead, they
represent points where the field equations are no longer
satisfied. In the usual instanton approximation, one
requires that the equations hold everywhere, and so
these singularities must be avoided. There are two ways
to achieve this. First, one can set

G'($z) = —0'($3), p = 4m/G'($3). (3)
This requires that q = m in the definition of G(x) and
implies that s3 —

$&
= s4 —gz. Geometrically, this
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[—R+F]— (4)16~ M 8~
This is infinite for (2), but the physically meaningful
quantity is the difference between the action for the
C-metric and a reference background. The appropriate
background here is flat space minus a wedge with deficit
angle 6,„,. As discussed earlier, we are viewing the
conical singularity in the C-metric and the background

corresponds to pair creating nonextreme black holes with
their horizons identified to form a wormhole [4]. The
surface gravities, or temperatures, of the black hole and
acceleration horizons are equal. Alternatively, one can
consider extremal black holes where gi = gz [5]. In this
case, the black hole horizon is infinitely far away. The
conical singularity on the acceleration horizon will be
absent provided we again set p = 4n/G'(g3).

Consider a cosmic string of a given p,,„t, or equiva-
lently, a given 6,„,. We want to compute the rate at which
extreme and nonextreme black holes are pair produced
with a string of deficit angle 6;„(6,„t between them.
So we need to evaluate the Euclidean action for the C-
metric with these parameters. The metric (2) contains five
parameters: m, q, A, p, and ~. Two of these are fixed
by (3) (or the analogous conditions for extreme black
holes). Two are fixed by our choice of 6,„, and 6;„. The
remaining parameter can be thought of as the charge of
the created black holes and remains arbitrary.

The Euclidean action for the Einstein-Maxwell theory
is given by

as an approximation to a thin smooth string composed of
gauge and scalar fields, which satisfy their field equations
everywhere. Thus, in evaluating the action, there is
no need to introduce additional boundaries around the
conical singularity. As discussed in [13—15], the action
is conveniently evaluated on a solution by rewriting
it in Hamiltonian form. The surfaces of constant
intersect on the horizons, and these points of intersection
must be treated separately. Evaluating the action in a
neighborhood of the horizon yields a contribution —A/4,
where A is the horizon area, so one obtains [15]

AI = pH —-AA„, —-Abh,

where H is the total energy of the C-metric relative to
the background, and AA„, is the difference between the
area of the acceleration horizons in the C-metric and
the background. H is the sum of a term which is pure
constraint and, hence, vanishes on a solution, plus an
extrinsic curvature boundary term given below. For the
extremal black hole of metric (2), the horizon is infinitely
far away, and so the surfaces of constant 7. do not intersect
there. As a result, there is no term 4Abh in the action.

To evaluate the first two terms in (5), we need to match
the C-metric and the background metric on a large sphere
near infinity. The sphere is defined by x —

y = e, and
we are interested in the limit e ~ 0. As in [7], we change
to new coordinates y, e, with x = $s + eg, y = g3 +
e(g —1), where 0 ~ g ~ 1. Then the induced metric
on the two-surface d r = d e = 0 is

1 Bo~t ~ ( eG"($3)~5
ds =, 41 — !g 1+, d~A'G'(6) 2~ ) ( 2G'(6) j X(X —1)

!
The background metric can be described by (2) with
m = q =0. We now require that the metric (6) agree
with the metric induced on the surface x —

y = e in the
background, where G(x) = 1 —x and $3 = —1. This will
be the case provided we impose the matching conditions
G'(s 3)A e = 2A e, and —e G "($3)/G'(s 3) = e, where A
is the parameter appearing in the background metric.

On a solution, the Hamiltonian in (5) is given by H =
jN( K — K), where K is the extrinsic curvature of
the boundary in the ~ = constant surface. One finds

~lK =Dn' =A eG'($s) 1+ e
G"(r )
G'(r )

(7)

Subtracting the analogous expression for the extrinsic
curvature in the background, and using the matching
conditions above, one finds that ( lK —( ~K = 0(e ).
From (6), we see that Q~ lg goes like e '. The lapse
behaves like N = O(e ')2). Therefore the energy term
in the action vanishes as e ~ 0.

We now compute AA„, . Since the area of each accel-
eration horizon is infinite, we integrate out to the surface
x = g3 + e, subtract, and then take e to zero:

Aacc
,+, A'(x —s3)'

2(27r —6 „,)
1

eAzG'($3)

Subtracting the similar expression
matching conditions give

~Aacc = Aacc Aacc

(g)
F4 —s3)

for A„, and using the

2(2~ —a.„,) i +
! (9)

1

A'G'(6) i& —Ei 6 —~»
The area of the black hole horizon is Abh = [2(2vr—
6„„,)/A G'(s 3)][(s 3

—s 2)
' —($4 —s 2) ']. Combin-

ing Abh, AA„„and using (3), gives the total physical
action

AI = 10)A'G'(6) (6 —6i)
This formula is also valid for the extremal instanton, since
in this case BI = —4AA„, and $q = $i.

For small mA we can find a simple expression for this
action. Fix 6;„and 6,„t. To first order in mA, one
finds mA = (6 „t —Ii;„)/8' = p, ,„, —p, ;„. This says
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that the black holes satisfy Newton's law. The acceleration
is determined by the net tension in the strings connecting
the black holes. Expanding the terms in the action (10)
in powers of mA and using this result we obtain (1). The
rate, e ~, is largest for the string breaking p, ;„=0. This
makes sense because roughly speaking the mass of the
black holes must come from the missing mass of the string,
so p, ;„=0 corresponds to the black holes tunneling out at
the smallest separation, which one expects for a quantum
event. The rate increases for a more massive external
string, and the rate vanishes when p, ,„t = p, ;„,which says
that one cannot pair create black holes without taking some
energy away from the cosmic string.

The process we have discussed could have cosmological
significance. It is well known that any process that turns
cosmic strings into black holes (or other massive remnants)
might seriously disrupt cosmic string cosmology. Note
that black holes are always left behind; in a closed loop
of strings, a nucleated black hole pair will race around
the string, consume it entirely, and collide to leave behind
black holes.

One can, however, substitute numbers corresponding
to grand unified strings into (1) and find that the rate
for breaking cosmic strings by this mechanism is far
too small to be of cosmological significance. For a
Higgs vacuum expectation value v —10' GeV and self-
coupling A —1, we must take the black hole to have massI )& 10 mp~ in order for the thin string limit implicit
in the use of the C-metric to be valid. This implies
p, —v —10 mp&. We then have 61&) 10'z, yielding
an infinitesimally small rate.

However, this estimate of the rate is only a lower limit.
The most likely tunneling event actually falls outside
the class described by the C-metric. This would be to
pair create the smallest possible black holes which can
swallow the Aux from the string. One can estimate the
size of such a black hole as having mass equal to a single
quanta of magnetic charge, making it extremal. For the
parameters assumed above, such a black hole would be
small on the scale of a flux tube, so we would need
another method for estimating the rate of production.

It is interesting to speculate about the production rate
for black holes with mass not equal to charge. For
a general choice of q and m in (2), there is a nodal
singularity at the Euclidean black hole horizon. However,
this singularity is integrable —it is only a two-dimensional
delta function in the curvature. Evaluating the action
(4) in the neighborhood of a horizon, one still finds that

the contribution is 4AH, using the Gauss-Bonnet theorem
[14]. Therefore the action evaluated on any of the C-
metrics is given by the basic formulas (5). Further,
using the expressions above for AA„, and Aqh, one
finds that for any of the C-metrics except the extremal
black hole case, the action is given by A1 = [(2~—
~o t)/2A G (s3)f H&3 6) + (F4 6) '). »n»ly
one finds that the value of AI for small mA given in (1) is
the same for all values of q, m.

These nonsmooth C-metrics are not solutions every-
where, and so they do not have the usual instanton in-
terpretation. However, since they fail to be a solution in a
very mild way, and the "answer" they give for the rates is
of exactly the same form as the smooth case, it is tempting
to speculate that they do give the leading contribution to
the pair production rate for general q, m. This is an issue
for further consideration.
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Note added. —After this work was completed, two
papers appeared which discuss black hole pair creation
and cosmic strings [16,17].
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