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Pair Creation of Black Holes Joined by Cosmic Strings
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We argue that production of charged black hole pairs joined by a cosmic string in the presence of a
magnetic field can be analyzed using the Ernst metric. The effect of the cosmic string is to pull the
black holes towards each other, opposing to the background field. An estimation of the production rate
using the Euclidean action shows that the process is suppressed as compared to the formation of black
holes without strings.
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The idea that some gravitational instantons can be
interpreted as mediating tunneling processes leading to,
e.g. , spontaneous formation of black holes, is an attractive
one, and has provided some hints on peculiarities of
the yet-to-be-built quantum theory of gravity, such as
topology changing processes and the statistical properties
of black holes. The simplest example is provided by
the Euclidean section of the Schwarzschild metric, which
was interpreted in Ref. [1] as yielding the nucleation
rate of black holes in a thermal bath. More recently
there has been considerable interest in solutions that
describe the spontaneous creation of black hole pairs. The
instantons relevant here are obtained from the analytic
continuation to Euclidean time of geometries related to
the C-metric, whose Lorentzian section is known to
represent a pair of black holes accelerating uniformly in
opposite directions [2]. In general, these solutions possess
conical singularities running along the axis in the direction
joining the black holes, either between the black holes or
running from each black hole to infinity. Physically, these
singularities refIect the presence of forces acting on the
black holes. As a general rule, a conical deficit tends to
pull the black hole towards it, whereas a conical excess
pushes in the opposite direction.

An interesting modification of the C-metric is the Ernst
metric [3], obtained by adding a background electromag-
netic field. This can be adjusted so as to compensate ex-
actly for the necessary force to accelerate the black holes,
and the resulting geometry is free from conical singulari-
ties. This solution has been extensively studied in recent
years [4—8]. However, as we will argue below, this is not
the only channel for the decay of the background magnetic
field. In fact, one can consider processes where the black
holes are joined by a cosmic string. It is then important
to ascertain whether the presence of the string enhances
or suppresses the probability for pair creation.

Below we will see that if, loosely speaking, the force
exerted on the black hole by the background field is
in excess to the product of its mass and acceleration
then the Ernst metric has a conical deficit running
in between the black holes. We will interpret this

physically by regarding the conical deficit as created by
a cosmic string which decelerates the black holes. [Very
recently, another process involving similar ingredients
but a different physical phenomenon (the breaking of
a cosmic string to yield a pair of accelerating black
holes) has been considered in Ref. [9]. It requires that
the conical deficit runs in directions opposed to what
we consider here. ] Clearly, a question to consider is
whether it is consistent to approximate a physical cosmic
string by a conical singularity even in the vicinity of a
black hole. This issue has been recently addressed in
Ref. [10], where it is shown that a Nielsen-Olesen vortex
can effectively pierce a black hole (and, in fact, it is
only slightly distorted near the horizon) resulting in a
geometry of a conical singularity centered on a black
hole. Moreover, in the same paper it is argued that it
is possible for a string to terminate on a black hole. This
cannot be achieved in a topologically trivial space, since
no gauge can be taken that remains regular as we shrink
to zero radius a two-sphere connected to the string end.
This topological obstruction disappears when the vortex
terminates in a black hole, because the spheres cannot be
contracted beyond the Schwarzschild radius. This opens
up the exciting possibility of considering a new variety of
string vortex —black hole interactions.

The black holes will be created in a background
magnetic field, described by the Melvin solution [11]

ds2 = (1 + 4B2Mp2)2( dt + dz + —dp )

j7+
(1+ 4~Mp')'

P ~M

2(1 + ~M4p')

The motion of a pair of charged black holes uniformly
accelerating in opposite directions in the background of a
magnetic field is represented in Einstein-Maxwell theory
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by the Ernst solution:
2
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where

A = (1 + zBqx) +
2 G(x),
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Now, in general, the Ernst metric contains conical

singularities running along the axes x = s 3, s q. These

and q = r r+. For a detailed description of this geom-
etry see, e.g. , Ref. [7]. Here we shall only summarize the
most important features.

The parameters in Eq. (2) will be constrained so that

G(s) has four real roots si ~ $z ~ $3 ( gq, and we
will also set s( = —1/r A. Then, the correct signa-
ture is obtained when x and y are restricted to the
ranges s3 ~ x ~ s4, —~ & y ~ x. The surfaces y =

$3 correspond to the inner black horizon, event
black hole horizon, and acceleration horizon, respectively;
x $3 $4 are axes pointing towards spatial infinity and
to the other black hole, respectively. It is not difficult
to see that the parameter A can loosely be thought of as
the acceleration of the black holes. We will also define
m = (r+ + r )/2, which can be identified as the mass
of the black hole. Another important feature is that the
Ernst metric asymptotes to the Melvin metric at spatial
infinity (x, y ~ s3). Finally, k will be taken so as to con-
fine Dirac string singularities to the axis x = s4.

It must be noted that q and 8 are not the physical
magnetic charge and field, but rather they approximate
them in the limit r+A, r A (( 1. In fact, the value
of the magnetic held on the axis, where it takes its

maximum value, is B = BG'(g3)/2L ~ [we have defined
L —= A($3)). Also, the adequate definition of the physical
charge of the black hole is q = I/4~ f F, so that

~V (s4 —6)q=q
4 L»z(I + —,qBg, )

where Ap is the period of the azimuthal coordinate p.
The semiclassical approximation is expected to be

reliable for small values of qB. This will be equivalent to
considering small r+A. In this limit we find the following
expressions for the roots s;:

1 +r+A+. . . ,
r+A

can be avoided by properly adjusting the period of p.
The situation we are interested in requires the absence of
conical singularities at the axis running to infinity. This
is obtained by setting

4~L
G'(e )

(6)

With the choice (6) the physical magnetic field and charge
in the weak field limit become

B = B(1 —2qB + 2p, ),
q = q(1 —2p, ). (9)

The procedure to obtain an instanton mediating the
decay process of the magnetic field to a pair of black
holes joined by a string has been described in Ref. [5].
First, we continue t = i~ in the metric (2). Positive
definiteness of the metric then requires gz ~ y ~ $3. For
nonextremal black holes, with s ~ 4 sz, regularity at the
horizons requires adjusting the surface gravities and the
period of w (i.e., the inverse temperature P) so that

4m 4m

G'(6) G'(6) (10)

The second equality is achieved when s( $2 $3 +
g4 = 0, which imposes the following restriction on the
parameters:

2q

In the limit of small r+A, this means that the black holes
are close to extremality. Equations (8),(9),(11) can be

If we also adjusted the value of the ratio
circumference/radius at x = g4 to match the value

(6), we would obtain the regular metric considered in

[3,5,6,8]. However, we have seen that it is also permis-
sible to have a cosmic string joining the black holes and
creating a conical deficit in between them. This requires

G'($3)A (s4) ~ G'(gg)L— (7)

In the limiting case (5), this inequality becomes approxi-
mately qB ) mA, indicating that the effect of the string
is to oppose to the force separating the black holes. The
mass per unit length, p„of a cosmic string is obtained as
I/8~ times the conical deficit that it creates. Then, in our
case,
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used to express all the parameters in terms of q, B, and

jL:

r = q[l + 2p, ~ (qB —p, )j,
m = q = q(1 + 2p),

1 ~ p
A = B 1 + —qB — (1 + 2qB)

2 qB

(12)

Notice that the effect of p, is to decrease the value of
A, so the string effectively decelerates the motion of the
black holes. It is also amusing to find that if we define,
as in Ref. [10], the black hole internal energy (or inertial
mass) by mt = m(1 —2p, ) (we are taking into account
that only half of the string is pinched on the black hole),
then mI = q.

For extremal black holes, the event horizon is at
infinite proper distance and we need only match p at the
acceleration horizon y = g3.

Now we can slice the Euclidean solution in half along a
constant r surface (we have to take two antipodal values
of r). The resulting geometry is precisely that of the
moment of closest approach of the black holes in the
Lorentzian-Ernst metric. Moreover, since the extrinsic
curvature vanishes for both surfaces, they can be glued
together. The process described in this way is the
quantum tunneling from the Melvin metric to a pair of
static black holes joined by a string that subsequently
accelerate to infinity. If semiclassical reasoning is valid,
then the rate of the process in first approximation should
be given by exp( —I,i), with I,i the action of the whole
Euclidean solution. One could worry about the issue of
the finiteness of the quantum corrections to the decay
rate. This is very hard to analyze in a metric with not
a very high degree of symmetry, like Eq. (2). Difficulties
could be expected due to the infinite redshift in the
presence of horizons. However, the qualitative aspects
of this problem can be thoroughly analyzed in the much
simpler case of thermal nucleation of black holes using the
Schwarzschild instanton [1], and in this case it has been
shown [12] that infinities can be properly renormalized in
a low energy expansion of the Einstein-Hilbert action.

The calculation of the Euclidean action can be per-
formed along the same lines as that for a pair of black
holes without a string. In fact, one can see that the deriva-
tion given in Ref. [8] (see also Refs. [6,13]) carries over
directly, so we will only quote the final result:

2~L
(13G'(6)~'(6 —ki)

1 1 p 1Ii =mq ——+ +2 +
-qB qB qB

(14)

This result is valid for both the extremal and nonextremal
cases.

Now we must express the action in terms of the
physical parameters, which we do in the weak field limit:

for the nonextremal case. The result for the extremal
case can be obtained by subtracting the black hole area
contribution, —A. bh/4 = zr—q from Eq. (14) [8].

We see in Eq. (14) that the action is increased when
there is a non-null string energy density p, . Therefore
creation of black holes joined by a cosmic string is
suppressed relative to the case where no string is present.
In fact, we can give a simple heuristic derivation of the
contribution of the string to the action. If we consider a
particle of mass 6m at temperature T, its action is given
by BI = Bm/T Reg.ard now the string as a collection
of particles of mass p, X (proper length), i.e. , 6m =
p, IgyyI, =», 6y at a local inverse temperature T

pQIg«I, =», . Then we calculate the string the action as

6
dy p Igttgyylx=»qIstrin g
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