
VOLUME 75, NUMBER 19 PHYSICAL REVIEW LETTERS 6 NovEMBER 1995

Pair Production of Black Holes on Cosmic Strings
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We discuss the pair creation of black holes by the breaking of a cosmic string. We obtain an
instanton describing this process from the C metric, and calculate its probability. This is very low for
the strings that have been suggested for galaxy formation.
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The study of black hole pair creation has offered a num-
ber of exciting insights into the nature of quantum grav-
ity, including some further evidence that the exponential
of the black hole entropy really corresponds to the num-
ber of quantum states of the black hole [1—4]. Black hole
pair production is a tunneling process, so it can be studied
by finding a suitable instanton, that is, a Euclidean so-
lution that interpolates between the states before and after
the pair of black holes are created. The amplitude for pair
creation is then given by e, where I; is the action of the
instanton. Black hole pair creation has been commonly
studied in the context of the Ernst metric [1,5], which de-
scribes the creation of a pair of charged black holes by
a background electromagnetic field. The Lorentzian sec-
tion of the Ernst metric represents a pair of charged black
holes being uniformly accelerated by a background elec-
trornagnetic field.

If we consider the Ernst metric with zero background
field, we obtain a simpler solution called the C metric [6].
The Lorentzian section still describes a pair of black holes
uniformly accelerating away from each other, but there is
now no background field to provide the acceleration. This
means that there is either a conical deficit extending from
each black hole to infinity, or a conical surplus running
between the two black holes. These can be thought
of, respectively, as "strings" pulling the two black holes
apart, or a "rod" pushing them apart.

The purpose of this Letter is to argue that the C
metric can also be interpreted as representing pair creation.
Specifically, we can imagine replacing the conical deficit
in the C metric with a cosmic string [7]. The Lorentzian
section would then be interpreted as representing a pair of
black holes at the ends of two pieces of cosmic string, being
accelerated away from each other by the string tension.
The Euclidean section of the C metric thus gives an
instanton describing the breaking of a cosmic string, with
a pair of black holes being produced at the terminal points
of the string. The infinite acceleration, zero black hole
mass limit of this breaking has been previously considered
in [8]. We will calculate the action of the Euclidean C
metric relative to flat space with a conical deficit, which
gives the approximate rate for cosmic strings to break by
this process. A similar calculation has previously been

done for the breaking of a string with monopoles produced
on the free ends [9],and we will show that our results agree
with those, in the appropriate limit.

The charged C metric solution is

ds = A (x —y) [G(y) dt —G '(y) dy

+ G '(x) dx + G(x) dq'], (1)
where

G($) = (1 —r A$) (1 —sc —r+Asc )

while the gauge potential is

(2)

A„= q(x —s3), (3)

where q = r+r, and we define m = (r+ + r )/2. We
will only consider this magnetically charged case. We
constrain the parameters so that G(s) has four roots,
which we label by st ~ s2 ( s3 ( sq. To obtain the
right signature, we restrict x to g3 ~ x ~ s 4, and y
to —~ & y ~ x. The inner black hole horizon lies at

y = s t, the outer black hole horizon at y = s2, and the
acceleration horizon at y = s3. The axis x = sq points
towards the other black hole, and the axis x = s3 points
towards infinity. To avoid having a conical singularity
between the two black holes, we choose

4~
IG'(W. ) I

' 4

which implies that there will be a conical deficit along
x = s3, with deficit angle

G'(6) )
Physically, we imagine that this represents a cosmic string
of mass per unit length p, = 6/8m along x = gs At.
large spatial distances, that is, as x,y: s3, the C
metric (1) reduces to fiat space with conical deficit 6
in accelerated coordinates. If we converted to cylindrical
coordinates (t, z, p, p) on the fiat space, the acceleration
horizon would correspond to the surface g = 0.

We might wonder whether it is possible to replace the
conical singularity in the C metric with a real cosmic
string. There are two potential problems: first of all, we
have to be concerned about the effect of the string stress

3382 0031-9007/95/75(19)/3382(4) $06.00 1995 The American Physical Society



VOLUME 75, NUMBER 19 PH YS ICAL REVIEW LETTERS 6 NovEMBER 1995

energy on the geometry in the neighborhood of the black
hole horizon. However, it was shown in [7] that real
vortices could pierce the black hole event horizon, so we
will assume that this does not prevent the replacement.

Secondly, we might worry about having a string end in
a black hole. If the strings are topologically unstable (that
is, there are monopoles present before the phase transition
at which the strings form), then we know that the strings
can end at monopoles. But away from the event horizon,
the field around a charged black hole is very similar to
that around a monopole. It therefore seems reasonable to
expect that a string can end in a black hole. It has been
argued that any cosmic string can end on a black hole,
even if the string is topologically stable [7] (this argument
is also given in [10]). However, Preskill has remarked
[11] that strings which are potentially the boundaries of
domain walls cannot end on black holes, as the boundary
of a boundary is zero (this category includes topologically
stable global strings). For strings that cannot be the
boundaries of domain walls, however, the argument of [7]
applies (contrary to the statements in an earlier version of
this paper).

We can obtain the Euclidean section of the C metric
by setting t = i r in (1). To make the Euclidean metric
positive definite, we need to restrict the range of y to s2 ~
y ~ g3. There are then potentially conical singularities at

y = gz andy = g3, which have tobe eliminated. We can
avoid having a conical singularity at y = g3 by taking r
to be periodic with period

4~Ar=P=
G'(6) (6)

If we assume that the black holes are extreme, that is,
g&

= s2, then the spatial distance from any other point
to y = $2 is infinite, and s2 ~ y ~ s3 on the Euclidean
section, so the conical singularity at y = $2 is not part of
the Euclidean section. Alternatively, if we assume $t ~
s2, we can avoid having a conical singularity at y = s2
by taking the two horizons to have the same temperature,
so that both conical singularities can be removed by the
same choice of Ar. This implies

6 —6 =s4 —6 (7)
As in the Ernst case, the former solution has topology
S X R —Ipt), while the latter has topology S &&

S' —Ept).
We can obtain an instanton by slicing the Euclidean

section in half along a surface r = 0, P/2. This instanton
will interpolate between a slice of flat space with a
conical deficit and a slice of the C metric, that is, a slice
containing two black holes with conical deficits running
between the black holes and infinity. Thus, this instanton
can be used to model the breaking of a long piece of
cosmic string, with oppositely charged black holes being
created at the free ends. If gz = s i, the black holes are
extreme, while if gz —s i = s4 —s3, the black holes are
non extreme.

IF. = PH —4(AM + A. bb)

in the nonextreme case, where the Hamiltonian is

N( K — Kp),8~
AA. is the difference in area of the acceleration horizon,
Mbb is the area of the black hole event horizon, X is a
surface of constant w, and 5 is its boundary at infinity.

Since the volume term in the Hamiltonian is propor-
tional to the constraint A, which vanishes on solutions
of the equations of motion, the Hamiltonian is just given
by the surface term. In the surface term, K is the ex-
trinsic curvature of the surface embedded in the C metric,
while Ko is the extrinsic curvature of the surface embed-
ded in the background, flat space with a conical deficit.
We actually take a boundary "near infinity, " and then take
the limit as it tends to infinity after calculating the Hamil-
tonian. We choose the boundary in the C metric to be at
x /=ac.

We want to ensure that we take the same boundary in
calculating the two components of the Hamiltonian, which
is achieved by requiring that the intrinsic metric on the
boundary as embedded in the two spacetimes agree. We
therefore want to write the Hat background metric in a
coordinate system that makes it easy to compare it to the
C metric. We can, in fact, write the flat metric as

ds2 = A 2(x —y) [(I —
y ) dt —(1 —

y ) dy

+ (1 —x ) 'dx + (1 —x )dip ], (11)

where Qp = 2' —6. Note that A represents a freedom
in the choice of coordinates, and x is restricted to —1 ~
x ~ 1. A suitable background for the action calculation
can be obtained by taking t = ir and y ~ —1 in (11).
We now take the boundary in the liat metric (11) to lie at
x —

y = ef. It is easy to see that the induced metrics on
the boundary will agree if we take

A = — „A, (12)

The semiclassical approximation to the amplitude for
the string to break (per unit length per unit time) will be
given by e ', where I; is the action of this instanton.
Using the fact that the extrinsic curvature of the slice
r = 0, P j2 vanishes, we can show that the probability
for the string to break is e ', where JF is now the action
of the whole Euclidean solution [12].

We will calculate the action of the Euclidean section
following the technique used in [4,13]. In fact, the
calculation is very similar to the calculation of the action
in [4]. Since the solution is static, the action can be
written in the form

IE = pH —4AM.
1

in the extreme case, and
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(14)

IF = —4AM.

We can now calculate the two contributions to the
Hamiltonian: the contribution from the C metric is (ne-
glecting terms of order e, and higher)

"(s )
( 3)

A e, IG'($4)I 4 G'($3)
while the contribution from the fiat background is

G'(g, )NKp= 1 + —t.f(&.) ( 4 )
Using (12), we see that these two surface terms are equal
to tl-.is order. Thus, in the limit e -. 0, the Hamiltonian
vanishes.

Thus, the action is just given by

4' 1 G"($ )
A'IG'(s 4) I (s4 —s 3) 2G'($3)

4~ 2
A'I G'(s 4) I (6 —s i)

(c. —c)
(6 —s2) (6 —s i)

In the extreme case, s 2
= s ~, so the action is

1 2'
4 A'I G'(s 4) I (6 —s i)

In the nonextreme case, the action is

(22)

Qg~xg~~ dx dg

4 (r. —6)
A2IG'(s4)I (6 s2) (s4 s2)

To calculate the difference in area of the acceleration
horizon, we calculate the area inside a circle at large
radius in both the C metric and the background, and
take the difference. The area of the acceleration horizon

y = s 2 inside a circle at x = s 3 + e, in the C metric is

Qg~~gpp dx dp

A (s4 —$3) A e

4~ G'(6)
A'

I G'($4) l(s 4
—6) ' G'(s )

(18)
where p, = 4/A G'(6)e, . The area of the acceleration
horizon z = 0 inside a circle at p = pf ln the flat
background is

G'(6)
Qgppg„„dp dp = vrpf, , , (19)

To ensure that we are using the same boundary in
calculating these two components, we require that the
proper length of the boundary be the same. This gives

G"(6)
G'(g3) A p'

We can now calculate the difference in area; it is

(2o)

in the extreme case and
1

IF = ——(AA + A. bb)

in the nonextreme case. Note that, as in the Ernst case
[4], the probability to produce a pair of extreme black
holes when the string breaks is suppressed relative to the
probability to produce a pair of nonextreme black holes
by a factor of e

The area of the black hole horizon is

p = r+A, (24)

and the action (22) and (23) in this limit is

~r+ ~m 2

(25)
A p,

in agreement with the calculation of [9], which found
that the action was IE = ~M /p, , where M was the
monopole mass.

If it is not topologically stable, the string is far more
likely to break and form monopoles than it is to break
and form black holes, as we do not expect that this
semiclassical treatment is appropriate if the black hole
mass I is less than the Planck mass, while the monopole
mass is typically of the order of 10 Mp&,„,k. However,
even certain kinds of strings that would be topologically
stable in Oat space can break by the pair creation of
black holes [10,11]. Since the mass per unit length
p, for realistic cosmic strings is typically of the order
10 "Mp~,„,k/Ip~, „,k, breaking to form either monopoles
or black holes is extremely rare, and the effect of
these tunneling processes on cosmic string dynamics is
negligible.
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1 2'
IF —(5A. + A.bb)4 A'IG'(s4) I (6 —6) '

(23)
where we have used the condition s2 —s ~

= $4 $3
to cancel the second contribution from AA. with the
contribution from A bb.

The limit r+A « 1 may be regarded as a point particle
limit, as it represents a black hole small on the scale set by
the acceleration. It is in this limit that we would expect
to reproduce the result of [9] on the probability for strings
to break, forming monopoles at the free ends. In this
limit, both the extreme and nonextreme instantons satisfy
r+ = r (that is, q = I). The mass per unit length of
the string in this limit is
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