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Einstein and Yang-Mills Theories in Hyperbolic Form without Gauge Fixing
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The evolution of physical and gauge degrees of freedom in the Einstein and Yang-Mills theories are
separated in a gauge-invariant manner. We show that the equations of motion of these theories can be
written in Aux-conservative first-order symmetric hyperbolic form where the only nonzero characteristic
speed is that of light. This dynamical form is ideal for global analysis, analytic approximation methods
such as gauge-invariant perturbation theory, and numerical solution.
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One of the prevailing issues facing general relativity,
indeed any gauge theory, is the separation of physical
from gauge degrees of freedom. This conceptual difficulty
is encountered in the generation of solutions of the field
equations, proofs of existence and uniqueness of solutions,
and attempts at quantization. In this Letter we present
explicitly hyperbolic forms [1] of the Einstein and Yang-
Mills equations of motion that clearly display the dynamics
of these theories without fixing a gauge. (The constraint
equations remain elliptic. ) The basic strategy, which is
applicable to any gauge theory, is to take an additional time
derivative of the equations of motion, use the constraint
equations, and guarantee equivalence to the original theory
via appropriate choice of Cauchy data. This completes
the program to cast general relativity in 3 + 1 form [2—
6] by integrating it with other efforts directed to finding
hyperbolic formulations of general relativity [7—10].

Our hyperbolic formulation preserves complete spatial
covariance by means of an arbitrary shift vector. The
standard 3 + 1 treatment [3,4] is gauge covariant in this
sense but not hyperbolic. Our formulation does require
a condition on the time slicing to deal with the time-
reparametrization invariance of the theory.

A hyperbolic formulation of general relativity is
valuable for many applications. The study of analytic
approximations can be given a rigorous foundation.
Gauge-invariant perturbation theory [11] arises naturally
as a perturbative reduction of the new equations [12].
Problems in global analysis, regarding the existence and
uniqueness of solutions [13,14], take on a new light

when viewed with the powerful tool of hyperbolic theory
[8,15,16]. Insights into quantum gravity and the problem
of time seem likely, given an understanding of the precise
role of time slicing necessitated by hyperbolicity.

For numerical relativity, the importance of a hyper-
bolic formulation cannot be overstated. There are many
algorithms for solving the hyperbolic equations of fluid
dynamics that can now be applied to general relativity.
More fundamentally, the isolation of physical from gauge
effects means that a numerically generated spacetime can
have a closer connection with a desired astrophysical sce-
nario. In the "grand challenge" effort to solve Einstein's
equations for the inspiral and coalescence of compact bi-
naries —a process expected to be observable in gravita-
tional radiation by LIGO and other detectors —one of the
difficult problems is the treatment of the horizon of the
black hole: gauge degrees of freedom can propagate faster
than light and can thus escape from the black hole. In
a hyperbolic formulation whose only nonzero speed of
propagation is that of light, the horizon again becomes
a natural physical boundary. The hyperbolic formulation
is also ideal for the treatment of gravitational radiation
in numerically generated spacetimes as it makes mani-
fest a split between background and propagating radiation
that has long been assumed in approximate calculation
schemes [17], in the extraction of gravitational radiation
wave forms at finite radius, and in the imposition of out-
going wave boundary conditions [18].

We first demonstrate the procedure in the simpler
context of Yang-Mills field theory in Oat spacetime
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D~F, =0.jO (3)
The Bianchi identity is

0 = DgF', + D„F',x + D,F'x . (4)
This is identically satisfied given the definition of F „,
and does not need to be imposed separately.

A hyperbolic wave equation for F,O is obtained by
taking a covariant time derivative of (2) and adding a
spatial gradient of (3):

DoD F';o + DoD~ F';~ + D; D~ F', o
= 0. (5)

Interchanging the order of covariant differentiations pro-
duces (gauge) curvature terms, which may be combined
using the antisymmetry of the structure constants. A co-
variant divergence of the Bianchi identity is then used to
give the nonlinear wave equation

D~D~F', o + 2f'b, F", F o
= 0. (6)

The full second-order system of equations consists of
the wave equation (6), the constraint (3), and the definition
of F „, in (1). [Combining the definition of F'; o in

(1) with the wave equation (6) would produce a third-
order hyperbolic equation, with principal part d/Bt, for
A, .] This system is hyperbolic with elliptic conditions
for initial data, and its solution is unique once Cauchy data
have been specified on an initial spacelike hypersurface.
The Cauchy data consist of an arbitrary gauge potential
A 0, the pair A'; and F';0 consistent with the constraint
(3), and D F', o such that the Yang-Mills equation of
motion (2) holds on the initial slice. With these data,
one can prove the hyperbolic system is equivalent to
the original Yang-Mills equations, yet no gauge-fixing
condition has been imposed.

The equations of motion (6) and the definition of
F';0 can be put in fIux-conservative first-order symmetric
hyperbolic form. The magnetic part of the equations,
implicit in the 8ianchi identity, must now be used
explicitly. Introducing the derivatives of the field strength
Gq ~, = D~F', as new variables, one finds

D Go' „+D Gk "~„= 2f'b, F F'g, ,
—(7)

D Gk'„, —DgG ', = f'b, F g F', . —(8)
The unknowns of the first-order hyperbolic system are
A';, F' „and Gq'~„and the equations consist of the
definitions of F', o and Go'~„(7) and (8).

(cf. [16]). The Yang-Mills field strength F', is given
in terms of the vector gauge potential A byF', = &~A', —B,A' + f'b, A" A', , (1)
where 8„ indicates ordinary partial differentiation in the
x~ direction in a Minkowski coordinate frame and f'q,
are the structure constants of the Yang-Mills gauge group
G. With D„ indicating a gauge covariant derivative,
the Yang-Mills field equations in the absence of sources
consist of three equations of motion (for each gauge index
value)

DOFa + DgFa 0
r. O IJ

and a constraint

From the first-order form, one sees that A'~ and
F'„, propagate with speed zero: that is, they are simply
"dragged along" the time axis during the evolution. It is
only the derivatives of the field strength that propagate
with the speed of light (c = 1). It must be emphasized
that A 0 is not an unknown of the first-order system
and that only the fields that propagate with nonzero
speed are gauge covariant. A gauge must be chosen to
specify A ~, but no gauge-fixing condition is required for
hyperbolicity.

A hyperbolic formulation for general relativity can be
found by a similar procedure [1] (cf. [9] where complete
spatial gauge covariance is not present because of the
choice of a zero shift vector). Consider a globally hyper-
bolic manifold of topology P X R with the metric

ds = Ndt —+ g;i(dx' + p' dt) (dx~ + pi dt),
(9)

where N is the lapse and p' is the shift. Introduce the
noncoordinate coframe,

0 = dt, 0' = dx' + p'dt, (10)
with corresponding dual (convective) derivatives

8o = 8/Bt —p'8/Bx', 8; = 8/Rx'. (l l)
Note that [Bo, 8;] = (R, P")Rg = Co; Rg, where the
C's are the structure functions of the coframe, d0
—-Cp 0~ A 0~.

The natural time derivative for evolution is [4]
Bo = Bo + P Bk —Xp = 8/Bt —Lp, (12)

where Xp is the Lie derivative along the shift vector
in a time slice X. In combination with the lapse as
N Bo, this is the derivative with respect to proper time
along the normal to X, and it always lies inside the light
cone, in contrast to 8/Bt It has the. useful property that
[Bo, 8;] = 0. The extrinsic curvature K;, of X is given by

()Iog;J = —2ÃE;) (13)
One employs a procedure parallel to that used in Yang-

Mills theory. The spatial metric g;~ is analogous to A;,
the shift p" to A'o, and the extrinsic curvature K;~ of X
to F';0. The lapse N is a new feature present in time-
reparametrization invariant theories.

In four dimensions, Einstein's theory, R~, =
8~G(T~, —zg~, T x), leads to six equations of motion
from R,~, three "momentum constraints" from R0;, and

the Hamiltonian constraint from G o = 2(R o R g).
0 & 0 k

The hyperbolic form of Einstein's theory is obtained by
taking a time derivative of the equations of motion and
subtracting spatial gradients of the momentum constraints,

~oR&~ V'&Ro) ~j R&o = A;~ . (14)
(Barred quantities are defined in the hypersurface X.)

Expressing (14) in a 3 + 1 decomposition, one finds

A,J=N K;, +J;~+S;), (15)
—1where = N'BoN 'Bo + V—' V'k is the physical wave

operator for arbitrary p~. If we denote the trace of the
extrinsic curvature by H = K k, then
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J;j = Bp(HK;& 2—K; Ky) + (N BQN + H)V; V&N 2N— (VgN)V(;(NK &)) + 3(V N)VpK;&

+ N Kp V (NV)N) —2V(;(K ) V)N) + N 'HV;VJN + 2N (V(;H) (Vi)N ) —2NK (;Ri)), —2NRkimK"
(16)

[where M(;~) = 2(M,J + Mj;)] and

5;j = N'V—;Vi(RQN + N H) . (17)
For A;j to produce a wave equation, S;~ must be equal

to a functional involving fewer than second derivatives of
K;~. This can apparently be accomplished in a number of
ways and constitutes the imposition of a slicing condition
on the spacetime. It is necessary to show that the slicing
condition can be imposed without spoiling the hyperbolic
nature of the evolution system.

A clear and simple slicing condition is the harmonic
condition (cf. [9] when P" = 0)

BoN+N H=0. (18)

In this scheme, the Cauchy data are simply g;~ and

K;~ satisfying the constraints and BoK;~ from the usual
evolution equation. The g;~, K;~ system is still hyperbolic,

[This can easily be generalized by adding an ordinary
well behaved function f(t, x) to the right-hand side. ]
Imposing (18) for all time amounts to imposing an
equation of motion for ¹ The complete system of
equations of motion is now the wave equation (15) for

. K;~, the harmonic slicing condition (18), and the definition
(13) of the extrinsic curvature. The Cauchy data for the
full system, to be given on an initial slice X, are g;j
and K;~ consistent with the Hamiltonian and momentum
constraints, the lapse N, and BoK;~, such that the Einstein
equations of motion hold on the initial slice. Using the
doubly contracted Bianchi identity, one can prove [1]
that, with these initial data, the hyperbolic system is fully
equivalent to Einstein's theory.

Another useful class of slicing conditions arises from
choosing H to be a known function of spacetime h(t, x).
In this case, the lapse function N is determined by
solution of the time-dependent elliptic problem,

Bph = VVkN + N(—R + H —g'~R;j). (19)

but the full set of equations is now mixed hyperbolic
elliptic. The shift vector can still be specified arbitrarily.
Proof of a unique solution proceeds by an iterative
method, and equivalence with the usual form of Einstein's
equations again employs the twice-contracted Bianchi
identity [1].

The harmonic condition is consistent with the natural
slicings of stationary spacetimes. For example, suppose
one has a spacetime with a timelike Killing vector and
a spacelike Killing vector proportional to the shift vector:
p' = fg' In this .case the evolution of the 3-metric gives
Bpg;1 = —2g(;B,)f so H = N '$'Bif Elimin. ating H
with the harmonic slicing condition yields s'Bi( f/N) =
0, which is clearly true for the Kerr geometry in Boyer-
Lindquist coordinates. It is possible and useful in per-
turbation theory to have the advantages of a specified H
and the harmonic slicing condition by choosing the shift
vector suitably. However, choosing a shift vector in this
particular way seems undesirable for numerical solution
of the full field equations because spacetimes evolved in
this fashion will tend to develop coordinate singularities
as in the stationary spacetimes mentioned above.

In the vacuum case, if we introduce, besides N, g;~
and K;~, new variables a, = N 'V;N —the acceleration
of the local Eulerian observers (those at rest in the
time slices) —its derivatives ap; = N &pa; and aj, =—]"
Vja; = a;j, as well as the derivatives of the extrinsic
curvature

(9oK;~ = NL)i (20)

and Mk;J = VkK;~, one can cast Eqs. (13), (15), and

(18) into complete Ilux-conservative first-order symmetric
hyperbolic form [1]. The unknowns of the first-order
system are g;~, N, K;~, L;~, Mg;~, a;, apl, and ao;, and
the equations of the first-order system are (13), (18), (20),
the definition of ao;, and

—
)tc

BQL;J —NV M);) = J;i, (21)

—2Km(;M )~BQM&ij NV)., Lij = NlagLij + 2Mi(; 'KJ)m + 2Km(iM&)g

+ 2K,„(,(K ~)a), + a~)K k
—a Kj)k)], (22)

~oa, = Nao; (23)

Bpaj; —NV&ap; = Na), [2M(, )
—M, + 2a(;K )

—a"Kj] + Na, ap;,

&pap; —NV a~, = N[ R";ap + a; (H ——2K')K + 2a"ag + 2a ~) + 2ai a", + HM;~ —2K M;ki],

(24)

(25)
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where J;J can be found from (16). Notice that the shift
is not an unknown of the first-order system. The form of
the first-order system is independent of the choice of Pk,
though it must be specified for solutions. To complete
the reduction to first-order form, the three-dimensional
Riemann curvature appearing in J;J is expressed in terms
of the three-dimensional Ricci curvature using

Rm& jp = 2gmr jR&~& + 2g&~pRj~m + R g~t[tt.„gJ]]i,

which in turn is eliminated by substituting
k

Rlj = Rlj + Llj —HKJJ + 2KjpK + a;Qj + 4/jj

(27)

The four-dimensional Ricci curvature is then eliminated
using the Einstein equations.

Note that in spatial dimensions greater than three, the
expression for R;Jk involves the Weyl tensor, which
cannot be eliminated using the Einstein equations. The
reduction to first-order form in these variables is thus
blocked.

One sees that g;J, K;j, X, and a; all propagate with
zero speed with respect to the Eulerian observers: they are
dragged along the normal to the foliation by the evolution.
Only the derivatives of the extrinsic curvature and the
derivatives of the acceleration propagate with the speed of
light. These represent time-dependent tidal forces and can
be used to form the components of the spacetime Riemann
tensor. The only propagating degrees of freedom then are
curvatures, as one would expect physically. Equivalently,
in the second-order system, the wave equation for K;j can
be viewed as defining the notion of radiation as distinctly
as possible in the context of a nonlinear, curved space
field theory. The inherent separation of the evolution
of the spatial metric and extrinsic curvature is a natural
starting point for a formal expansion scheme that is gauge
invariant at each order.

When linearized around a static background 3-metric,
the evolution equations for g;J and the wave equation
for K;j decouple. For instance, with a Oat space back-
ground, the simple wave equation K;~ = 0 for the extrin-
sic curvature is obtained (assuming harmonic slicing). The
evolution equation for the 3-metric contains no new infor-
mation about the dynamical degrees of freedom. Simi-
larly, one can linearize about static or stationary black
hole backgrounds, for instance, the Schwarzschild or Kerr
geometries. In the Schwarzschild case, (15) reduces di-
rectly to scalar wave equations for the even- and odd-
parity radiation modes. (The 3-metric evolution equation
is again irrelevant. ) Taking an additional time derivative
of the scalar equations, one recovers the standard results
of gauge-invariant perturbation theory [11]. The pair of
scalar wave equations obtained for each (8, m) multipole
combination can be matched directly onto a numerically
generated interior solution and provides both a gauge-
invariant radiation extraction method and a clean prescrip-
tion for outer boundary conditions (including backscatter

of waves). By refining the assumed exterior background
spacetime, arbitrary amounts of physical detail can be in-
corporated by this general method.

The reasoning we have applied in this paper can be
applied to general relativity coupled to other fields with
well-posed Cauchy problems, as well as to generally co-
variant and gauge theories in the broad sense. One sees
that the procedure of taking time derivatives and adding
further variables can be continued to build a "tower"
of equations that, provided suitable initial conditions are
given, is equivalent to the original theory. Nothing fun-
damental is gained by going beyond the stage at which
gauge-invariant equations of motion are obtained, as in
this paper, but we find the equations that propagate the
spacetime Riemann tensor components directly aestheti-
cally appealing. By achieving a hyperbolic formulation
of a gauge theory without gauge fixing, one has mani-
festly physical propagation without the encumbrance that
comes from having to impose particular gauge conditions.
The physical structure of the theory is revealed with the
full gauge symmetry preserved.
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