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Local Unbinding of Pinched Membranes
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Loosely bound membranes exhibit an unusual elastic response when pinched together by optical
tweezers, locally unbinding to a large intermembrane distance. Tweezing a stack of many bound
membranes produces extreme local swelling in the vicinity of the tweezing point. We introduce a
model that incorporates bending elasticity, fluctuations, and intermembrane interactions to calculate the
membrane profiles subject to a local pinch. Theoretically, we find strongly overshooting profiles in
agreement with experiment. We predict scaling behavior of the overshoot with the pinch strength
and size.
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Adhesion of biological membranes involves both the
attraction of two homogeneous surfaces [1] and the
interactions of specific molecular binding sites [2,3].
Experiments suggest that binding sites are dominant
locally. However, the overall binding of two membranes
with localized "chemical stickers ' is strongly influenced
by the elastic response and fluctuations of the embedding
bilayer [4]. To study the overall membrane response
to a single binding site, we study a simplified model
system by locally pinching together two membranes with
optical tweezers [5,6]. This system can also model
"local collisions, " which are important in the study of
interacting, flexible membranes and the understanding of
their unbinding transition [7,8].

Previously, we showed that laser tweezers remove area
from the membrane, inducing tension in membranes with
limited area and thus driving shape transitions. In the
present work the tweezers are used primarily as a me-
chanical tool, clamping at a point two large planar mem-
branes, which effectively have unlimited area and allow
only a negligible buildup of tension. We studied bilayers
composed of dimyristoyl-phosphatidylcholine (DMPC)
(Sigma) produced by a standard technique [9]. Our ex-
perimental setup is described elsewhere [10,11]. Typical
working conditions were 30 C and laser intensities from
30 up to 150 mW. We selected sets of two or more nearly
Oat membranes, which were sections either of huge vesi-
cles or of lamellar sheets that extended from the bottom of
the cell to its top. We chose sections of membranes that
appeared to be bound or loosely bound, at a distance of
-1 p, m. The membranes are pinched by the laser tweez-
ers in the —0.5 p, m region of the trap. Regardless of the
dynamic development of the pinching process, once the
two membranes are pinched together, a steady state profile
is reached with a large overshooting "lip" centered around
the pinch. This state, shown in Fig. 1, can be maintained
for several minutes and shows stability against observable
thermal fluctuations. Eventually the structure is destabi-
lized by the occasional trapping of surrounding vesicles
or due to the escape of the membranes from the trap.

The experiments indicate that the overshoot size grows
with tweezing intensity. When tweezed at extremely high
intensities (over 150 mW) the profile structure may
change qualitatively, and more complex, budding struc-
tures develop.

We emphasize that the lip profile of Fig. 1 is obtained
in steady state. The kinetic pathways in reaching this
steady state are varied: (1) A moderate symmetric over-
shoot develops upon tweezing. (2) An asymmetric pinch
develops prior to the lip profile. (3) The membranes first
separate upon tweezing (no lip profile), then the two mem-
branes are pulled back into the laser trap and the charac-
teristic lip profile develops. In (3) only one membrane is
caught in the trap at the first stage, while the other fluctu-
ates freely thus increasing the intermembrane distance.

Our theory predicts membrane profiles which closely
resemble those that are experimentally observed. The

FICJ. l. (a) Two loosely bound bilayer membranes prior
tweeztng. (b) Tweezing (at arrow). (c) Increased laser

intensity. The bar represents 10 p, m.
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theoretical analysis of the pinching of two flat, bound,
tensionless membranes is based on an interfacial curvature
model [12], which takes into account both the bending
energy [3,12,13] of the membranes and an effective
intermembrane interaction that models the effects of
thermal fluctuations [14]. We minimize the free energy,
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subject to boundary conditions imposed by the pinch.
Here h(r) is the local intermembrane distance, sc is the
bending modulus, P is an external pressure arising from
the mechanical constraints of other close vesicles and the
walls of the cell, and dS is the area element. The in-
termembrane interaction potential, V(h), can have both
repulsive and attractive terms [14]. The repulsive term
in the p, m region is an effective interaction induced by
the confinement of the thermal fIuctuations. The loss in
fluctuation entropy per membrane due to the proximity of
the neighboring membrane produces an effective repul-
sion [15]:Vf = (3n /64) (kBT) /Irh The com. bination
of this repulsion with the pressure produces a bound state
with an equilibrium spacing h. Alternatively, the mem-
branes can bind due to microscopic attractive (e.g. , van
der Waals [16]) interactions [17] even in the absence of
pressure.

The minimum energy configuration of a membrane near
a pinch is given by solving the fourth order, nonlinear
Euler-Lagrange equation:

~V' h(r) + dV/dh + P = 0. (2)

This equation is solved, assuming axial symmetry, with
two boundary conditions at the edge of the pinch, r = rp,
and two at r = ~. At the pinch the membranes are forced
to maintain a distance hp ( h. At infinity their distance
decays back to the equilibrium value, h. The absence
of any constraint on the slope at the edge of the pinch
is equivalent to imposing V' h~„=„„=0. Previous work
[20,21] treated the limit hp = h, where Eq. (2) can be
linearized [quadratic V(h)]. The resulting overshoot is
then very small and depends linearly on hp.

In the nonlinear case where hp « h the behavior is
striking and resembles the experimental profiles. The
repulsive interaction in the vicinity of the pinch is strong,
leading to a large positive slope [22] and thus a strong
overshooting response. In order to minimize curvature
energy the profile oscillates [20,21]. This is unique to
systems governed by curvature elasticity, as opposed
to lower order gradient terms (tension) that dictate a
minimum of area and therefore produce monotonically
decaying profiles. In Fig. 2 we show several membrane
profiles for a system bound by pressure. The qualitative
shape of these profiles is the same for any attractive
potential that goes to zero at infinity.

There are two physical parameters of the pinch that
determine the membrane profile: The strength of the pinch,
modeled by hp, and the trap area, rp. As the pinch becomes
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FIG. 2. Theoretical profiles for a pinch of ro —1 and several
pinching strengths. Ao = 1 & 10 "—solid curve, ho = 3 X
10 —dotted curve, and h() = 1 X 10 —dashed curve. The
membrane height and the distance from the pinch are both
measured in units of the equilibrium intermembrane distance,
h. Inset: Entire lip configuration for ho = 1 X 10 . In these
profiles ~ —10k~r.
stronger (hp ~ 0) and its area larger the overshoot size
increases.

Balancing the chemical potential of the membrane
in different spatial regions, we can formulate scaling
relations for the overshoot profile. We find several scaling
regimes depending on both hp and rp, which will be
presented elsewhere [23]. For simplicity we present only
the scaling behavior for the region rp » h and hp « h,
where the behavior is essentially independent of rp.

In this quasi-one-dimensional regime we find that the
overshoot height, h „,and the profile width, w, scale as

—&/2 &/4
hmax hp, w hmax for the case with a finite ex-

—1 &/2
ternal pressure, while h „—hp and w hmax for a
system bound by an attractive potential. Figure 3, where
we show the results of one-dimensional numerical cal-
culations (i.e., effectively rp ~ ~), confirms this scaling
behavior. The theoretical profiles, which agree very well
with the experimental observations, are at the edge of this
scaling region. This one-dimensional regime is also in-
teresting because of its relevance to adhesion problems
where many binding molecules aggregate to form a rela-
tively large close contact region [20,24].

To compare experiment and theory we fit the theoretical
parameters to the observed experimental profiles. The
Helfrich repulsion and pressure term define a potential
well at h. The pressure is rescaled so that h = 1. The
depth of the well is then given by the coefficient of the
Helfrich interaction, (3' /64) (kBT) /K [15,25], which
is 0 05k&T for this sys.tem (~ = 10kBT). In the theory
we fit two parameters: hp and ~ (which defines the depth
of the well). To match the observed profiles hp/h must
be of the order of 10 —10 . The effective depth of
the intermembrane potential well needed to fit the typical
cases of Figs. 1(b) and 1(c) is 0.05kaT and 0.08k~T,
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most localized near the trap and does not deviate strongly
from the initial background tension, which is present due
to the finite area, A, of the system and is of the order
of k&T/A ~ 10 erg/cm . Theoretically we find that
a strong overshoot is obtained as long as the tension is
low. Above a threshold uniform tension the membrane
responds monotonically to the pinch without overshoot-
ing. Estimates of the curvature and stretching energies in
the overshooting area yields an estimate for this threshold
of the order of 10 erg/cm .

(2) Tension gradients and lipid gow. —Even in a tlat
membrane with large excess area the tension near the trap
is set by the laser and is high. The maximal tension, cr „,
which can be induced in the bilayer is set by the energy
flux of the laser that is 5 X 10 erg/cm [10,26], for
laser intensity Ip = 50 mW. This tension is still not high
enough to actually change the intermolecular distances in
the bilayer [27]. But if lipid is pulled (Ilowing) into the
trap, there must be entrainment of water and consequently
a buildup of pressure near the trap, which might drive a
bulging overshoot [28]. However, the pressure and ten-
sion rapidly fall off away from the trap, as evidenced by
the visible fluctuations. It is conceivable that hydrody-
namics determines the response only right at the trap [28],
microscopically fixing the boundary conditions used to pa-
rametrize our model. Currently, ho is a parameter fitted by
the experimental profiles to rather low values.

(3] Heating effects —Heating . effects due to local ab-
sorption were measured to be negligible [29]. Unbinding
as a result of heating [8] is ruled out since we heated the

FIG. 3. (a) Maximum intermembrane separation (overshoot)
as a function of the intermembrane distance, ho, at the pinching
point, for both the pressure case (empty circles) and the
interaction case (solid circles). (b) Width of overshooting
region as a function of the overshoot. The graphs show the
scaling laws in the one-dimensional limit discussed in the text
(i.e., ro ~ ~).

respectively (for ro = 0.5 p, m). This is in reasonable
agreement with the predicted magnitude given above.

While the theory presented here provides a satisfactory
and physically interesting explanation of the experiment,
the fact that the laser is applied continuously during the
entire process leads us to consider several alternative
effects, which turn out to be less relevant.

(1) Global tension The main .a—ction of optical tweez-
ers on a lipid bilayer is to attract lipid into the trap. So
long as the membrane has excess area, it will accommo-
date the area loss with practically no tension by changing
its shape. Once tension appears it can lead to shape trans-
formations in tubes [11] and to pressurization of floppy
micron size vesicles [10], but its effect is reduced in the
huge lamellar structures of the present work because a
significant reduction of area is needed for the buildup of
high tension. The presence of fIuctuations while pinch-
ing indicates that the tension induced by the laser is at
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FIG. 4. (a) A stack of about 12 bound bilayers (part of a huge
multilamellar vesicle) pinched at a point. Only a few bilayers
are actually pinched. (b) Tweezing a stack of about 20 bilayers,
the membranes continuously swell to a large intermembrane
distance. Violent fluctuations appeared during this swelling.
The membranes relax to their initial state after tweezing ends.
The bar represents 10 p, m.
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sample to 20 C above the working temperature and ob-
served no unbinding.

Finally, as an experimental extension of the two mem-
brane profiles, we show in Fig. 4 the effect of tweezing
on multilamellar stacks. The response of the stack to the
pinching of a few of the lamellae within it is complex,
leading to a continuous dynamic evolution of the stack's
profile.

We have studied both experimentally and theoretically
the local unbinding of pairs of membranes. These local
defects are interesting because they are manifestations of
the highly nonlinear interplay between interactions and
curvature energy of the membranes, and are of importance
to the understanding of the nontrivial unbinding transition
of membranes.
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