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Phase Diagram of Vortices in Superfluid *He-A

U. Parts, J. M. Karimiki, J. H. Koivuniemi, M. Krusius, V.M. H. Ruutu, E. V. Thuneberg, and G. E. Volovik*

Low Temperature Laboratory, Helsinki University of Technology, 02150 Espoo, Finland
(Received 6 June 1995)

Four alternative but topologically different structures of vorticity exist in rotating *He-A. As a
function of magnetic field (H) and rotation velocity ({2), we identify with NMR the type of vortex

which is nucleated during cooling from the normal to the superfluid phase.

The measurements are

compared to the calculated equilibrium phase diagram of vortices in the H-{) plane at temperatures
T = T.. Slow transitions are found to reproduce the calculated equilibrium state.

PACS numbers: 67.57.Fg, 05.70.Fh

Soon after the discovery of the superfluid phases of
liquid 3He it became evident that the anisotropic A phase
could support unusual types of vorticity [1,2]. In differ-
ent rotating experiments, four alternative structures have
been identified with various measuring techniques [3—-6].
We describe here the first measurements in which all four
vortex types can be created and detected in the same ex-

“periment. This allows us to measure their phase diagram
by cooling slowly into the superfluid phase in a rotating
container at constant rotation and magnetic field. The ex-
perimental result is found to agree with our numerically
computed equilibrium phase diagram. The underlying
principles are of interest for a discussion of the dimen-
sionality and structure of topological defects formed in a
symmetry-breaking phase transition. Superfluid phases of
3He, with their many competing defects, can be used as
a laboratory model which may help us to understand, for
instance, the nucleation of cosmic strings in the early uni-
verse [7]. This is especially true for the A phase, which
has many similarities with the vacuum of electroweak
interactions [8].

Superfluid ‘He-A.—The superfluid state of >He-
A is described by a 3 X 3 matrix order parameter
Agr = Ady (R + ifg) [9]. The unit vector d denotes
a symmetry-breaking direction in the spin space. The
orthogonal unit vectors m and fi define the direction
of the orbital angular momentum I=m x n, which
is analogous to the direction of the isotopic spin in the
electroweak vacuum.

The superfluid velocity is generally defined as the
gradient of the phase ¢: vy = (k/27)V¢. (Here k is the
circulation quantum, equal to Planck’s constant divided
by twice the mass of an atom in 3He.) In 3He-A, a
phase factor exp(i ¢) is equivalent to a rotation of m and

i around 1, so that this definition has to be generalized

to vy = (k/2m)m;Va;. Tt follows that instead of being
potential, vy has nonzero circulation which depends on

the orientational distribution of i(r) [1],

fdr SV = Lfdxdyi (A x oD, (D)
2

I—Iere the vorticity is assumed parallel to z, i.e., i(r) =
1(x, y). The integral on the right equals the net area which
I(r) sweeps of the surface of a unit sphere I - 1 = 1.
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The degeneracy of the order-parameter manifold is
reduced by two interactions. The dipole-dipole interaction
leads to the energy f; = ~%gd(a - 1)2, and an external
magnetic field H produces fy = %gﬂ(a - H)?2. In the
absence of frustration, fy fixes d perpendicular to H,
while f; forces a “locked” configuration with 1 = *d.

Vortex structures.—Neglecting boundary effects, the
equilibrium state of rotating 3He-A has a periodic pattern
of vorticity. The different vortex structures can be clas-
sified with a few quantum numbers, which characterize
one unit cell of the two-dimensional Bravais lattice. The
circulation number is defined by N = $dr - v,/«. The
vortices can be either singular or continuous. The latter
alternative means that the order parameter retains the A-
phase form everywhere. For continuous vortices we can
further define the winding numbers v; and v, from the in-
tegral »; = (1/47) [dx dyl - (9,1 % ayi) and its analog
for the d field. It follows from Eq. (1) that N = 2py; i.e.,
the circulation is simply related to the area 1 sweeps on
the surface of the unit sphere.

The i(r) fields of the four vortex types are shown
in Fig. 1. (i) The first vortex, which was observed
in NMR measurements [3], is the continuous unlocked
vortex (CUV) with quantum numbers N = 2y; = 2 and
vy = 0[10]. The unlocked region, the “soft” core, where
i+ i&, is shown shaded in Fig. 1.

(i) The singular vortex (SV) has been experimentally a
controversial object. In this measurement it is reliably
identified for the first time, but in retrospect we can
ascribe part of the earlier data from ion transmission
measurements [4,11] to the SV. Although it is not
required by topology, the SV has for energetic reasons
also a soft core with a nonuniform 1 texture (v; =~ 1/2
and v; = 0) [10]. The hard core, where 1 is not defined,
is displaced from the center of the vortex. In spite of a
large energy contribution from the hard core, the singular
vortex is favored at low angular velocity ) since it has
the smallest circulation with N = 1.

(iii) The locked vortex (LV) has topologically equiv-
alent 1 and d fields, i.e., v, = vy = N/2. The first ex-
perimental indication comes from ultrasound absorption
measurements [5]. This structure is favored in low mag-
netic fields where the cost of d not being perpendicular to
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FIG. 1. Four vortex structures of rotating >He-A: continuou§ unlocked vortex (CUV), vortex sheet (VS), singular vortex (SV), and
locked vortex (LV1). The arrows denote the orientation of 1 in the x-y plane. The rotation axis € is parallel to z. The shaded
area marks the “soft core” of the unlocked vortices (CUV, VS, and SV) where d and 1 deviate from each other. In the LV, d and i
follow each other everywhere. The 1 field is continuous with the exception of the SV, where 1 is not defined in the “hard core.” In
all cases the vorticity has periodicity in the x-y plane, but the complete periodic unit is depicted for the LV1 only. For the VS one
full periodic unit in the x direction is shown; by stacking these units one after another, its soft core becomes a continuous sheet.
The CUV is equivalent to one period of the VS, when it is bent and closed to a cylinder. The length scales are 0.01 and 10 um
for the hard and soft cores, respectively, and 200 um (at Q = 1 rads/s) for the unit cell.

H is not serious. Two lattice structures have been
predicted for the LV. One of them has a circulation
number N = 4 and a square lattice (LV1, Fig. 1) [12],
while the other has N = 2 and a stretched triangular
lattice (LV2, not shown in Fig. 1) [13].

(iv) Finally, the vortex sheet (VS), first identified in
NMR measurements [6], has the same quantum numbers
as the CUV. The difference between the two becomes
evident when their periodic units are stacked one after
another: the CUV forms a lattice of vortex lines while the
VS forms a series of equidistant soliton planes.

Experiment.—The vortices are nucleated at fixed ()
and H by cooling from the normal phase, through the
superfluid transition temperature 7., to some final temper-
ature Ty well below T.. During this process the vortex
state evolved at some 7' < T, will freeze in because tran-
sitions between vortex types become suppressed at low
temperatures. If 7 is sufficiently low, then no transitions
take place even if the field is changed at T¢. Thus, the su-
perfluid transition can be traversed at different fields, and
the NMR measurement is done independently at a lower
temperature with the field at the NMR value Hymr.

The measurements were performed in a rotating cryo-
stat. Two improvements were important: (1) The mea-
suring technique was transverse continuous wave NMR
at a fixed frequency with a linear field sweep around the
Larmor field Hnmr = 11 mT. The measuring sensitivity
was much enhanced with a superconducting high-Q reso-
nance circuit connected directly to a preamplifier operating
at 4.2 K. (2) Supercooling of 3He-A was necessary to sup-
press the transition LV — CUV. It also greatly improved
the frequency resolution of the NMR peaks. Supercool-
ing depends on the smoothness of the sample cell walls

[14]. Two cylinders were used, one made of epoxy and
the other of fused quartz. In the latter, the smooth walls al-
lowed 3He-A to be cooled to 0.457T, at 34.2 bars, while the
thermodynamic T4 = 0.787.. The 3He containers had a
radius of 2.5 mm, a height of 7 mm, and both H and Q
were aligned along the axis of the cylinder.

Identification of vortex structures.—Four NMR absorp-
tion spectra are shown in Fig. 2. Each spectrum has a
main peak and one or more satellite peaks. Only the
main peak is present in the nonrotating equilibrium state
(i = ialH). The satellite peaks arise from vortices in
the rotating state. The different vortex types can be distin-
guished from the frequencies and intensities of the satel-
lites. The spectra from the CUV and VS in Fig. 2 have
been described previously [3,6]. Here we concentrate on
the SV and LV, which have not been seen with NMR
before.

The frequency shifts of the satellites are independent
of Q. For satellites that arise from vortex lines, the
intensity is proportional to (), or the number of lines
in the equilibrium state. The reason is that (at Anmr
and ) = 3 rad/s) the vortices are far apart and respond
independently to NMR. The identification of the SV
spectrum is justified by the following considerations: (1)
The spectrum clearly differs from that of the CUV and
VS. (2) The frequency and intensity of the satellite peak
are in quantitative agreement with model calculations
on the SV [10]. The frequency v agrees with the one
calculated by Vulovic ef al. with accuracy 0.01Avy,in at
T = 0.87, and 0.05Av.in at T = 0.7T.. The intensity
agrees within 30%. (3) The spectrum is recorded under
the conditions where the SV is expected to appear
(Fig. 3).
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FIG. 2. Four NMR absorption spectra measured in rotating
supercooled He-A. The horizontal axis is the frequency shift
from the Larmor value yHnmr. The shift of the main peak is
used for thermometry. Each spectrum is labeled with the vortex
type that gives rise to one or two visible satellite peaks. The
measuring conditions at 34.2 bars pressure are essentially the
same for all spectra (CUV)-(LV) {(rad/s) = 0.58, 0.7, 0.58,
0.4, and T/T. = 0.49, 0.50, 0.52, 0.49, respectively.

The LV spectrum is obtained if the field is kept low
until the temperature has been reduced below 0.6T, after
which H is increased to the measuring value Hxvr. This
spectrum has a large satellite that is only slightly displaced
from the main peak. We associate the satellite with the
LV which, in the measuring situation, is distorted by the
large field Hnmr. The justification is as follows: (1) The
satellite differs from those of the other vortices by its
frequency and intensity. (2) The vortex state is created
in low field, where the LV prevails. (3) Only a small
frequency displacement from the main peak is expected
because a structure with 1 = +d should give no shift.

Experimental phase diagram.—The results of the mea-
surements are shown in Fig. 3. After each cool-down
from the normal phase with constant H and (2, the num-
ber of vortices of different type was determined from the
satellite peaks. The general features of the phase diagram
are as expected: The SV occupies the region of high H
and low Q. If the field is reduced, then the LV is ob-
tained, or, if ) is increased, then the CUV prevails.

Some more detailed observations are also in order:
(1) The VS can be created in a few different ways
below T, [6], but it did not show up by simply cooling
through 7.. Apparently, our maximum Q = 3 rad/s is
too low for the VS to appear (see below). (2) The phase
transitions between different vortex types are broadened.
In each case there seems to be an overlap regime where
two different types of vortices are simultaneously present
such that there is a smooth change in their relative
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FIG. 3. Phase diagram of vortices in the magnetic field H
and rotation velocity  plane. Each circle represents a rota-
tional state created by cooling through 7, at constant H and
€, under 29.3 bars pressure. The shading of the circles in-
dicates the relative number of continuous vortices. The SV
(open circles) dominates when H > 1 mT and ) < 2 rad/s,
while continuous vortices (filled circles) occupy two regions
(LV1 and CUV). The transition between the LV1 and SV
agrees with an earlier measurement (rectangle) [4] where vor-
tices were created in a similar manner but detected with ion
transmission. The crosses mark transitions between the CUV
and LV1 from an experiment where vortices were created by
increasing () at a constant T = 0.9T,, and detected by ul-
trasound [5]. The lines denote the theoretical phase diagram
where the LV?2 appears only as metastable (dashed lines) within
the stable region of the SV. We have used the parameter val-
ues g = 2mgq/hp) = 180 rad/s [£4 = (A/2m)\/p\/ga =
7.6 um], and Hy = \/g4/gn = 2.0 mT, where pj is the su-
perfluid density parallel to 1. For clarity of the figure, the for-

mer was chosen larger than our independent estimate (), =
120 rad/s.

number on crossing the coexistence regime. (3) The
transition between the LV and CUV was not studied
in detail because our test runs agree with earlier results
[5] although these have been measured under somewhat
different conditions.

The broadening of the phase transitions in Fig. 3 is
related to the details of how nucleation proceeds at T.,.
Large cooling rates are observed to increase the ratio of
continuous versus singular vortices. The data in Fig. 3
have been collected at cooling rates = 5 uK/min, when
the dependence on the rate starts to wear out. A further
complication is that in a magnetic field the superfluid
transition is split into A; and A, phases so that T4, —
Taz = (0.6 uK)H /(10 mT). Moreover, the container has
a thermal gradient, which means that a second-order phase
transition proceeds in the form of a phase front similar to
a first-order transition. The discussion of the transition
details is deferred to a later report.
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Generally, rotating experiments on >He-A were done by
first cooling to the superfluid state and only then starting
the rotation. If the temperature is sufficiently close to 7,
Gi.e., 1 = T/T. <2 X 1073), we find that accelerating
rotation at constant 7 seems to yield the same result
as in Fig. 3. However, at any lower temperature only
continuous vortices are formed. The evident reason is
that the hard core of a SV has a high energy density,
and is not easily nucleated out of a uniform flow field,
even though the total energy would be smaller for a SV
than for a continuous vortex. In fact, the energy barriers
between different vortex types become so large at low 7'
that no transitions take place. We see no decay in states
consisting of CUV or SV at T < 0.99T,, irrespective of
H, and the same holds for the VS if T < 0.907T. and
H > 1 mT [6]. The easiest transition is that from LV
to CUV, which (at H = 10 mT) is suppressed only below
0.6T.. There seems to be no practical way of determining
the general phase diagram at temperatures far below 7.

Theoretical phase diagram.—The equilibrium vortex
structure can be calculated by minimizing the free energy.
For continuous vortices the functional consists of the
external field energy fy, dipole-dipole energy f4, kinetic
energy, and gradient energies for d and 1 [9]. We
have constructed a computer program that minimizes this
functional for vortices close to T., but we exclude the
region nearest to 7., where the A phase is distorted
toward the A; phase. Initially, a periodic guess for the
I =1 X h and d fields is made. Then the fields are
iteratively changed toward a minimum of energy without
imposing any constraints other than the initial periodicity.
We have found the four different continuous structures
(LV1, LV2, CUV, and VS) by trying out a number of
different initial guesses. The phase boundaries between
them are marked in Fig. 3.

The singular vortex was not initially included in the cal-
culation because its two very different length scales (for
the hard and soft core radii) make this difficult. However,
it was approximately incorporated in the phase diagram by
assuming the core energy to be a constant, independent of
H and Q. The constant was determined by fitting to the
experimental data. Besides some uncertainty in the scal-
ing factors of the ) and H axes, this constant is the only
adjustable parameter in the theoretical phase diagram.

Some separate pieces of the phase diagram have been
calculated before, using variational models [10,13]. A
qualitatively new feature in the diagram is the vortex sheet,
which seems to form the equilibrium state at surprisingly
low (). Another unexpected result is that both the VS and
CUYV become favored over the LV at large ), even in zero
field [15]. We understand this so that the LV has gradient
energy associated with the d field, and with increasing Q
it becomes more costly than the energy associated with the
soft core in the VS and CUV.

In conclusion, on comparing the experimental and
theoretical phase diagrams, we see that they are in
qualitative agreement. This is not entirely obvious since
the calculation addresses the equilibrium state in the A
phase, but the experiment involves the dynamical process
of vortex nucleation. Indeed, the dependence on the cool-
down rate and the complexities of the transition into the
superfluid state let us anticipate that the opposite limit of
rapidly quenched transitions is an important direction to
pursue [16]. What also remains for future experiments is
the verification of the vortex-sheet ground state at large
rotation velocities, and the distinction of the two types of
locked vortices.

*Permanent address: L.D. Landau Institute for Theoretical
Physics, 117334 Moscow, Russia.
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