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It is found that a neutral particle acquires a nontrivial quantum phase independent of the particle

velocity in crossed electric and magnetic fields.

It is proved that the phase is independent of the

particle trajectory shape if the fields are homogeneous along a certain direction. The phase induced by
the crossed fields is shown to be responsible for dissipation-free flows in superfluid systems, which are

similar to the Meissner currents in superconductors.

PACS numbers: 67.40.-w

The forceless action of crossed dc electric and magnetic
fields upon neutral quantum particles was first observed in
[1,2]. These papers describe the behavior in the magnetic
field of a neutral particle with a dipole moment induced by
the electric field. It was found that in crossed electric and
magnetic fields the kinematic impulse of the particle did
not coincide with its generalized impulse. This results in
a number of striking effects; in particular, nondissipative
mass flows appear in polarizable superfluids in crossed
fields. Ginzburg shows [3] that the effects predicted in
[1,2] may be interpreted as a direct consequence of the
Abraham force acting upon the system. Effects close in
idea to the predicted ones [1—-3] were found independently
six years later by Aharonov and Casher [4] who studied
the behavior of a neutral quantum particle having its
own magnetic moment in an electric field. The nontrivial
character of these predictions [1-4] is emphasized by the
fact that the notion of the Aharonov-Casher oscillations
has appeared in the science. The oscillations are similar
to those predicted earlier in [5].

However, in [1,2,5] the author did not pay attention to
the close relationship between the predicted effects and
the nontrivial quantum phase of the particles and to the
topological nature of the effects. This relationship was first
pointed out in [4]. The paper [4] provoked a considerable
number of publications; e.g., see [6—11]. The paper by
Wilkens [12] is one of the latest publications in this series.
Wilkens studied the behavior of a neutral quantum particle
with its own dipole moment in a magnetic field. Aharonov
and Casher and Wilkens found a nontrivial quantum phase
of particles having their own magnetic [4] and dipole
[12] moments. The present paper reports the finding of
a nontrivial quantum phase of a particle with a momentum
induced by electric or magnetic fields. It turns out that the
results obtained for such particles differ drastically from
those in [4,12]. The reason is that the induced moments,
like the inducing fields, decrease as the distance from
the charge (for the electric field) and from the current
(for the magnetic field) increases. It is found that the
phase acquired by particles is essentially dependent on the
problem of symmetry. In addition, new experiments are
proposed, which can make the observation of the effects
predicted in [1-5] much easier.
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The nontrivial phase of the polarizable quantum particle
in crossed fields is determined by the part of the Lagrange
function which is dependent on the particle velocity. This
part can readily be found if we know the force of the
field action upon the particle and hence the equation of the
particle motion. In the context of our interest in the effects
induced by the nontrivial phase in condensed media, we
find the velocity-dependent part of the Lagrange function
for a homogeneous and isotropic liquid.

We proceed from the expression for the density of
electromagnetic energy in the fluid
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It is assumed here that for immobile fluids the electric
D and magnetic B inductions are related to the field
strengths E and H as D = €¢E and B = uH. If the
fluid is moving at the velocity v, the induction-strength
relationship becomes (e.g., see [13])

D+~]—VXH=8(E+~1~VXB),
| ; @
B+—~E><v=,u,<H+—D><v>.

c c
Now we calculate the derivative dw/dtr using the

Maxwell equations. The derivatives de/dr and du /9t
are calculated taking into account that (cf. [14])
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where n is the fluid density obeying the continuity
equation on/dt + V - nv = 0. A similar equation exists
for du/dt. We then obtain
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Here j. is the current density of free charges in the fluid.
If we take f as the force with which the field acts on
unit volume of the fluid and S as the energy flow, Eq. (4)
attains the meaning of the law of energy conservation: a
decrement in the field energy in unit time is equal to the
work done by the field on the free charges j. - E and on

=j.-E+f-v+V-S. o
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the fluid v - f plus the energy flow divergence S. We
write down the expressions for S and f when ¢ — 1 < 1
and u — 1 < 1, which is the only case considered here.
Then the energy flow is
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where pg is the pressure in the fluid at a given density p
when the field is absent. It is seen now that the part of
the Lagrange function dependent on particle velocity is

2
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Correspondingly, the generalized momentum per unit
volume of the fluid is given by

u> dr. )
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Equations (8)—(10) are the basis for further calculations.
When a particle is moving along a closed path, the
induced phase A ¢ is equal to the action increment divided
by /A during the time 7 of the motion on the closed
path. Substitution of p in the form of > ; m&(r — r;) into
expression (9) gives the nontrivial phase of the particle in
crossed fields:

Ap = [ ALdt/h = f(H X E)dl
_ BB —
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In the general case, V X (H X E) is intricately ex-
pressed in terms of the fields E and H and their deriva-
tives. The situation can, however, be simplified if the
problem is homogeneous is some direction. For exam-
ple, let the field be independent of the coordinate z. Then
the differentiation of the fields E and H and use of the
Maxwell equation gives

[VX (H X E)], = 47T<peH + %je X E) . (12)
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Here p. is the charge density and j, is the current density.
The fields E and H in Eq. (12) are the sum of the external
fields and those excited by the charges p. and the currents

PVk 7

Here the quantity

epn — 1
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is used where p = mn is the mass density of the fluid.
On adding the force from Eq. (6) to the right-hand side
of the equation of motion for the kinematic momentum
per unit volume of the fluid pv, and using the continuity
equation for the density p, we obtain the equation
allowing for the forces with which the electromagnetic
field acts on a neutral fluid,
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Je. It can be proved that if the currents exciting the field
H are within the contour the integral of Eq. (12) over the
space inside the contour is identically zero. If the currents
are beyond the contour, only the first term contributes to
the integral of Eq. (12). Since in the case considered the
integrals of the xth and yth components of V X (H X E)
are equal to zero, then

- 1
Ap = £~ ", ]pedS (13)

Thus in crossed ﬁelds a neutral polarized particle which
has accomplished a complete pass around the charges
exciting the electric field gains a phase independent of
the trajectory shape.

The phase induced by the crossed fields in a neutral
quantum particle causes macroscopic effects when the
particles condense into a superfluid liquid. Taking into
account that the generalized momentum per unit volume
of the superfluid liquid is ZV¢ p,, where ¢ is the order
parameter phase, Eq. (10) can give the circulation « of the
superfluid velocity along any closed contour around the
uniformly charged line in the magnetic field homogeneous
along this line

K:fvs dl = f( lH><E>-a’l
m nch
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Here H)| is the magnetic field projection onto the charged
line and 7 is the charge per unit length of the line.
The integer s can be found from the requirement for the
minimum f dr p; vf /2, which, because of the arbitrariness
of the integration contour in Eq. (14), is equivalent to the
requirement for the minimum of the circulation modulus.
A closer consideration of the condition shows convincingly
that crossed electric and magnetic fields induce flows in the
superfluid liquid whose velocity v, is a periodic function
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of the charge in the line 7 and of the magnetic field H.
The oscillation period is readily found from the relation
(ep — DHy7 = 27nch. These flows are dissipation free
and correspond to the ground state of the neutral superfluid
liquid in crossed fields. It is evident that, concurrently
with the velocity v, the energy and other thermodynamic
characteristics also oscillate with the same period. These
oscillations were predicted for © = 1 in [5].

Now we go from the system invariant with respect to
translations in a certain direction to the system invariant
against rotations about a certain axis. Let us consider
the disk in Fig. 1, which has a current-carrying wire
running through its orifice. Let the disk be covered with a
superfluid liquid, e.g., He II, film. It is important for what
follows that the radial steady-state current may flow in the
film—e.g., from the center towards the edges in the upper
film and the reverse in the lower film. On substitution of
vy = (h/m)Ve into the continuity equation V - j; = 0,
the dependence of the phase ¢ upon the coordinate p can
be found as

m? (upper film),
27rs r
¢ = R?
d/R+d/r+2InR/r % +1n— (lower film).
rp
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If we charge the disk, it will excite the electric field
E, = X270 (o is the two-dimensional charge density)
normal to the disk. The current I, through the wire will
excite a magnetic field around the wire with a nonzero
component H, equal to 2I,/cp. The crossed electric
E, and magnetic H, fields induce radial superfluid flows
which add up to the radial flow found above. The energy
of the total flow is

R rom 2
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=2 (FiV ——HX E) dpdeo
], [0 2m? ¢ 47Tnc2 pare
27Tps( whs ep — 1 O'IZ)
= - InR/r. 16
m?2 \InR/r n 2 )" /r (16)

FIG. 1. A disk covered with a superfluid film in the magnetic
field of current. On charging the disk, the electric field E,
normal to the disk surface and the magnetic field H,, circulating
around the wire induce dissipation-free radial currents j, in the
film.
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In this expression the integer s can be found from the
requirement for the minimum of energy Z. As the
product o, increases, the integer s takes on the values
0,1,.... The energy is an oscillating function of the
density of charge o and current 7,. The oscillation period
can be found from the condition (eu — 1)ol,/nc? =
mh/InR/r.

Now we shall discuss experiments in which we can
measure directly the circulation of a superfluid liquid
in crossed electric and magnetic fields. The first of
the experiments proposed is similar to that known as
Vinen’s experiment [15] on measuring circulation of
He II in a rotating vessel (see also [16]). Let us
assume that a thin flexible charged wire of radius r
is stretched in a vessel with a superfluid liquid, and a
homogeneous magnetic field H is switched on parallel
to the wire (the axis z). As the wire is moving in the
plane xy, four forces will act on its unit length: tension
T9%u/9z% (here and henceforth u is the displacement
of the wire and T is the tensile force applied along
the wire), Lorentz force (7H/c)(du/dt) X z, Magnus
force pykz X (du/adt), where k is the circulation from
Eq. (14), and, finally, friction. If vibration frequency
of the wire w obeys the inequality w > »,/r? (v,
is the kinematic viscosity of the normal component of
the liquid) and the vibration amplitude of the wire a
is small as compared to r, the friction force is [17]

27 pnr 2v, 0 du/dt. The equation of motion of the
wire is
0%u 0%u (TH ) ou
2
+p) s =T + (1= - =
7ri(po + p) 2 Py o Pk )
d
Xz —2mp,r/2v,w a—‘:
amn

Here pg is the density of the wire material and p =
ps + p, is the total density of the liquid. The coefficient
before 9%u/9t> shows the effective mass of the unit
length of the wire, which is the sum of the wire itself and
the added mass equal to the mass of the liquid expelled by
the wire (for a cylindical wire).

The eigenfunctions of Eq. (17) are u = wugexpli(kz —
wt)], where the components ug, and ugy are related
as ugx = *iugy. The signs — and + correspond to
the right- and left-polarized modes, respecitvely. The
corresponding eigenfrequencies are

we = Qs + [QF + Tk /7% (po + p)]'/2 (18)

Here

(19)

Thus the normal modes of the charged wire in the
magnetic field are circularly polarized; the frequencies of
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the rotation in opposite directions differ by Aw = w4 —
w-. Atlow temperatures the imaginary part of {) is much
smaller than the real one; i.e., the attenuation time of
the vibrations is large as compared to their periods. The
circulation « in crossed fields can therefore be measured
by measuring Aw. If « is replaced by its value from
Eq. (14), then Aw is

Ps TH 1
= + — — B —
Aw [1 ’ € ])} c 7r2po * p) (20)

in weak fields, when the integer s in Eq. (14) is zero.
The addition proportional to p; in Eq. (20) is due to
nondissipative flows which induce crossed electric and
magnetic fields in the superfluid liquid. For He II at p, =
p this addition is about 0.05 of the frequency difference
Aw in the normal phase (i.e., at p; = 0).

To conclude, an experiment is described in which
the superfluid currents induced by crossed fields can be
detected through measuring the static characteristics of
the system. Let oppositely charged cylinders of radius
r be immersed in a superfluid liquid and the magnetic
field H be applied in parallel to the cylinder axes (see
Fig. 2). In the presence of flow with velocity vy, the
cylinders experience oppositely directed Magnus forces
psk+€(vop X Z), where k+ is the velocity circulation
about the positively and negatively charged cylinders.
The couple of Magnus force turns the thread OB (see

Fig. 2). The rotation angle of the thread in its bottom
part is
2L €
= —7 — (R vo)ps(k- — k). (21
ma*t u

Here p is the shear modulus of the thread, a is the
thread radius, and R is the length of the arm AB.
The other symbols are given in Fig. 2. If the absolute
values of the charges on the cylinders coincide and are
equal per unit length 7, the maximum modulus of the
angle ¢ is (4mLR€/mua*)psve. This value will be
achieved at y = 5 + s, where y = 2a7H/ch and s is
an integer. The relation y = % + s dictates the values
of the field H and the charge 7 at which the circulation
« around each of the cylinders changes by jumping to the
neighboring quantized value. The jumps are accompanied
by the change of the ¢ sign. This process is periodically
repeated when y changes. The oscillations of ¢ should
have the period y = 1.

Now let us consider the numerical esti-
mates. Let L =50cm, a=10"3cm, ¢ = 10 cm,
r=1cm, wvo=1cms™!, u=3x10" ergecm™3,
ps=p=15%xX10""gem™3, m = 6.6 X 1072 g (the
latter two values are for “*He). Then @max = 0.75 rad.
In the magnetic field H = 10° G this @max is first
achieved for “He (a = 2 X 1072° cm?®) in the electric
field E =~ 2.5 X 10° V/cm at the cylinder surfaces. The
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FIG. 2. Schematic view of the system for measuring super-
fluid currents induced by crossed electric and magnetic fields.

field can be decreased if we increase the radius » of the
cylinders (the field £ ~ r~1). These estimates show that,
even though the observation of oscillations vy with H and
7 is no simple problem, the fact of the superfluid currents
appearing in crossed fields can be established without
trouble since, e.g., at H = 10° G, E = 10* V/cm, the
angle ¢ =~ 2°.
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