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Polarizable Quantum Systems in Crossed Electric and Magnetic Fields
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It is found that a neutral particle acquires a nontrivial quantum phase independent of the particle
velocity in crossed electric and magnetic fields. It is proved that the phase is independent of the
particle trajectory shape if the fields are homogeneous along a certain direction. The phase induced by
the crossed fields is shown to be responsible for dissipation-free fIows in superfluid systems, which are
similar to the Meissner currents in superconductors.

PACS numbers: 67.40.—w

The forceless action of crossed dc electric and magnetic
fields upon neutral quantum particles was first observed in

[1,2]. These papers describe the behavior in the magnetic
field of a neutral particle with a dipole moment induced by
the electric field. It was found that in crossed electric and
magnetic fields the kinematic impulse of the particle did
not coincide with its generalized impulse. This results in
a number of striking effects; in particular, nondissipative
mass flows appear in polarizable superfluids in crossed
fields. Ginzburg shows [3] that the effects predicted in

[1,2] may be interpreted as a direct consequence of the
Abraham force acting upon the system. Effects close in
idea to the predicted ones [1—3] were found independently
six years later by Aharonov and Casher [4] who studied
the behavior of a neutral quantum particle having its
own magnetic moment in an electric field. The nontrivial
character of these predictions [1—4] is emphasized by the
fact that the notion of the Aharonov-Casher oscillations
has appeared in the science. The oscillations are similar
to those predicted earlier in [5].

However, in [1,2,5] the author did not pay attention to
the close relationship between the predicted effects and
the nontrivial quantum phase of the particles and to the
topological nature of the effects. This relationship was first
pointed out in [4]. The paper [4] provoked a considerable
number of publications; e.g. , see [6—11]. The paper by
Wilkens [12] is one of the latest publications in this series.
Wilkens studied the behavior of a neutral quantum particle
with its own dipole moment in a magnetic field. Aharonov
and Casher and Wilkens found a nontrivial quantum phase
of particles having their own magnetic [4] and dipole
[12] moments. The present paper reports the finding of
a nontrivial quantum phase of a particle with a momentum
induced by electric or magnetic fields. It turns out that the
results obtained for such particles differ drastically from
those in [4,12]. The reason is that the induced moments,
like the inducing fields, decrease as the distance from
the charge (for the electric field) and from the current
(for the magnetic field) increases. It is found that the
phase acquired by particles is essentially dependent on the
problem of symmetry. In addition, new experiments are
proposed, which can make the observation of the effects
predicted in [1—5] much easier.
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where n is the fluid density obeying the continuity
equation dn/Bt + V nv = 0. A similar equation exists
for d p, /dt. We then obtain

= j E+f. v+7' S. (4)

Here j, is the current density of free charges in the fluid.
If we take f as the force with which the field acts on
unit volume of the fiuid and S as the energy fiow, Eq. (4)
attains the meaning of the law of energy conservation: a
decrement in the field energy in unit time is equal to the
work done by the field on the free charges j, E and on

The nontrivial phase of the polarizable quantum particle
in crossed fields is determined by the part of the Lagrange
function which is dependent on the particle velocity. This
part can readily be found if we know the force of the
field action upon the particle and hence the equation of the
particle motion. In the context of our interest in the effects
induced by the nontrivial phase in condensed media, we
find the velocity-dependent part of the Lagrange function
for a homogeneous and isotropic liquid.

We proceed from the expression for the density of
electromagnetic energy in the fluid

+ —I.
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It is assumed here that for immobile fluids the electric
D and magnetic 8 inductions are related to the field
strengths E and H as D = eE and 8 = p, H. If the
fluid is moving at the velocity v, the induction-strength
relationship becomes (e.g. , see [13])

1 1D+ —vXH=a E+ —vXB
c C (2)
1 18+ —EXv=p, H+ —DXv
c c

Now we calculate the derivative d vv/rit using the
Maxwell equations. The derivatives dc/Bt and rip, /dt
are calculated taking into account that (cf. [14])
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If we charge the disk, it will excite the electric field
F., = ~2vro (o. is the two-dimensional charge density)
normal to the disk. The current I, through the wire will
excite a magnetic field around the wire with a nonzero
component H~ equal to 2I, /cp. The crossed electric
E, and magnetic H~ fields induce radial superfluid flows
which add up to the radial flow found above. The energy
of the total flow is

i
hV'p — H XE pdpd0

R 2m.

p 2m ( 477oc
2mp, mhs ap, —1 a.Iz

lnR r.
»R/r (16)

of the charge in the line ~ and of the magnetic field H.
The oscillation period is readily found from the relation
(ap, —I)H~~r = 2vrnch Th. eseflowsaredissipation free
and correspond to the ground state of the neutral superfluid
liquid in crossed fields. It is evident that, concurrently
with the velocity v„ the energy and other thermodynamic
characteristics also oscillate with the same period. These
oscillations were predicted for p, = 1 in [5].

Now we go from the system invariant with respect to
translations in a certain direction to the system invariant
against rotations about a certain axis. Let us consider
the disk in Fig. 1, which has a current-carrying wire
running through its orifice. Let the disk be covered with a
superfluid liquid, e.g. , He II, film. It is important for what
follows that the radial steady-state current may flow in the
film —e.g. , from the center towards the edges in the upper
film and the reverse in the lower film. On substitution of
v, = (6/m)Vp into the continuity equation V' . j, = 0,
the dependence of the phase p upon the coordinate p can
be found as

In this expression the integer s can be found from the
requirement for the minimum of energy X. As the
product o.I, increases, the integer s takes on the values
0, 1, . . . . The energy is an oscillating function of the
density of charge o. and current I, . The oscillation period
can be found from the condition (ep, —I)o I, /nc
~r/InR/r

Now we shall discuss experiments in which we can
measure directly the circulation of a superfluid liquid
in crossed electric and magnetic fields. The first of
the experiments proposed is similar to that known as
Vinen's experiment [15] on measuring circulation of
He II in a rotating vessel (see also [16]). Let us
assume that a thin flexible charged wire of radius r
is stretched in a vessel with a superfluid liquid, and a
homogeneous magnetic field H is switched on parallel
to the wire (the axis z). As the wire is moving in the
plane xy, four forces will act on its unit length: tension
TB u/Bz2 (here and henceforth u is the displacement
of the wire and 1 is the tensile force applied along
the wire), Lorentz force (rH/c)(Bu/Bt) X z, Magnus
force p, Kz X (Bu/Rt), where K is the circulation from
Eq. (14), and, finally, friction. If vibration frequency
of the wire ai obeys the inequality co » v„/r (v„
is the kinematic viscosity of the normal component of
the liquid) and the vibration amplitude of the wire a
is small as compared to r, the friction force is [17]
2~p„r /2v„cu Bu/Rt The e.quation of motion of the
wire is

2 8 U2

~r (pp + p) Bt2

I BU
pqK

) Bt
BU

X z —2'77 p~ r $2 v~ co
Bt

8U vH= T +
C
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Here pp is the density of the wire material and p =
p, + p„ is the total density of the liquid. The coefficient
before 8 u/8 t2 shows the effective mass of the unit
length of the wire, which is the sum of the wire itself and
the added mass equal to the mass of the liquid expelled by
the wire (for a cylindical wire).

The eigenfunctions of Eq. (17) are u = up exp[i(kz-
cut)], where the components up, and upY are related
as up = ~iupY. The signs — and + correspond to
the right- and left-polarized modes, respecitvely. The
corresponding eigenfrequencies are

cu = II + [A + Tk /7rr (pp + p)]'i .

Here

p

FIG. 1. A disk covered with a superfIuid film in the magnetic
field of current. On charging the disk, the electric field E,
normal to the disk surface and the magnetic field H~ circulating
around the wire induce dissipation-free radial currents j, in the
film.
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Thus the normal modes of the charged wire in the
magnetic field are circularly polarized; the frequencies of
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the rotation in opposite directions differ by Ato = co+-
to . At low temperatures the imaginary part of 0 is much
smaller than the real one; i.e., the attenuation time of
the vibrations is large as compared to their periods. The
circulation ~ in crossed fields can therefore be measured
by measuring 5to. If tr is replaced by its value from
Eq. (14), then Aco is

A

J'7 //
L

c err'(p() + p)
Aco = 1 + —(a —1)

ps 7H

p
(20)

in weak fields, when the integer s in Eq. (14) is zero.
The addition proportional to p, in Eq. (20) is due to
nondissipative fIows which induce crossed electric and
magnetic fields in the superfluid liquid. For He II at p, =
p this addition is about 0.05 of the frequency difference
A co in the normal phase (i.e., at p, = 0).

To conclude, an experiment is described in which
the superAuid currents induced by crossed fields can be
detected through measuring the static characteristics of
the system. Let oppositely charged cylinders of radius
r be immersed in a superfIuid liquid and the magnetic
field H be applied in parallel to the cylinder axes (see
Fig. 2). In the presence of flow with velocity vo, the
cylinders experience oppositely directed Magnus forces
p K+- Z(vp X z), where tr~ is the velocity circulation
about the positively and negatively charged cylinders.
The couple of Magnus force turns the thread OB (see
Fig. 2). The rotation angle of the thread in its bottom
part is

—(R . vp) p, (tr —tr+ ) .~a4 p,

Here p, is the shear modulus of the thread, a is the
thread radius, and R is the length of the arm AB.
The other symbols are given in Fig. 2. If the absolute
values of the charges on the cylinders coincide and are
equal per unit length ~, the maximum modulus of the
angle p is (4vrLRP/mrna )p, vo This value will b. e

1
achieved at y =

2 + s, where y = 2ct r H/c 6 and s is
an integer. The relation y =

2 + s dictates the values
of the field H and the charge ~ at which the circulation
~ around each of the cylinders changes by jumping to the
neighboring quantized value. The jumps are accompanied
by the change of the p sign. This process is periodically
repeated when y changes. The oscillations of p should
have the period y = 1.

Now let us consider the numerical esti-
mates. Let L =50cm, a = 10 3 cm, Z = 10cm,
r =1cm, v0=1cms ', p, =3 X 10" ergcm
p, = p = 1.5 X 10 ' gcm, m = 6.6 X 10 g (the
latter two values are for He). Then p,„=0.75 rad.
In the magnetic field H = 10 G this pm» is first
achieved for 4He (n = 2 X 10 25 cm3) in the electric
field E = 2.5 X 10 V/cm at the cylinder surfaces. The

FIG. 2. Schematic view of the system for measuring super-
Auid currents induced by crossed electric and magnetic fields.

field can be decreased if we increase the radius r of the
cylinders (the field E —r '). These estimates show that,
even though the observation of oscillations v, with H and
~ is no simple problem, the fact of the superAuid currents
appearing in crossed fields can be established without
trouble since, e.g. , at H = 105 G, E = 10 V/cm, the
anglep =2.
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