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What Forces Bind Liquid Crystals?
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The surface freezing transitions in four liquid crystals (90.4, 40.7, 70.7 and 14S5) have been
studied to determine the temperature dependence and the finite-size behavior of their effective interface
potentials. The effective interface potentials are simply related to the attractive pair potentials between

the molecules, and were used to probe the forces that bind these liquid crystals.

Our measurements

provide strong evidence for the two attractive forces expected theoretically in liquid crystals, long-
range van der Waals and short-range exponential forces, and also admit the possibility of the recently

predicted “thermal-Casimir” forces.

PACS numbers: 61.30.—v, 64.70.Md, 82.65.Dp

What attractive forces bind liquid crystals? Most of the
usual forces which bind condensed matter (namely, the
ionic, covalent, metallic, and hydrogen bonding forces)
are absent in conventional thermotropic liquid crystals.
This would appear to leave only the usual van der Waals
forces to bind these liquid crystals. There are, however,
two special attractive forces which might also help bind
liquid crystals: (1) long-range ‘“thermal-Casimir” forces
which decay algebraically with distance, and (2) short-
range effective forces which decay exponentially with
distance. This Letter describes our experimental search
for evidence that these two special forces help bind liquid
crystals, and describes new effective forces due to finite
system size.

The recently predicted [1] thermal-Casimir forces are
due to the dipole-dipole interactions between the ther-
mally fluctuating permanent dipoles of the liquid crystal
molecules. The thermal-Casimir forces are the thermal
analogs of the quantum mechanical van der Waals forces
which are due to the dipole-dipole interactions between
the quantum fluctuation induced dipole moments of the
molecules. The magnitudes of the nematic- and smectic-
thermal-Casimir forces in liquid crystals are predicted to be
comparable to the magnitudes of the usual van der Waals
forces. The smectic-thermal-Casimir forces, which should
help bind smectic liquid crystals, are due to the thermally
driven smectic layer fluctuations. These forces can be dis-
tinguished from the usual van der Waals forces because the
effective pair potential [2] for the smectic-thermal-Casimir
forces decays more slowly with distance (as 7 ~>) then the
van der Waals contribution, which decays as r~°.

The short-range effective force is a predicted conse-
quence of the order parameter profile near the surfaces.
The surface tension quenches the smectic layer fluctuations
near the surface and thereby enhances the smectic layering
near the surface [3]. This surface-enhanced smectic lay-
ering has been shown experimentally [4] to decay expo-
nentially with distance from the surface. This exponential
decay of the smectic order parameter will create an expo-
nentially decaying short-range effective force [5].
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How can the relative contributions of the van der
Waals, thermal-Casimir, and exponential forces be deter-
mined experimentally for different liquid crystals? The
two best experimental methods for studying the distance
dependence of the intermolecular interactions in liquid
crystals are layer-by-layer surface freezing measurements
[6,7] and surface force apparatus measurements [8]. Both
of these methods determine the sum of all of the forces
versus distance, and not the individual forces. The rel-
ative contributions must be obtained by analyzing the
distance dependence of the sum. Unfortunately, surface
force apparatus measurements can be used only to probe
the behavior of the forces in contact with a solid wall, and
not at a free surface. There have been surface force appa-
ratus measurements reported [8] for lyotropic liquid crys-
tals that demonstrate the importance of the electrostatic in-
teractions in charged lyotropic smectic phases, but surface
force apparatus techniques have apparently no been used
to study the origin of the forces in thermotropic smectic
liquid crystals.

We showed previously [6,7] how the layer-by-layer sur-
face freezing of thermotropic liquid crystals could be used
to determine the distance dependence of the intermolec-
ular forces. Our measurements for the thermotropic lig-
uid crystal 90.4 showed that 90.4 is dominated by van
der Waals forces. There is no evidence for any thermal-
Casimir or exponential force contributions to the bind-
ing of 90.4. One of our major motivations for the cur-
rent study was to see whether the behavior we found for
90.4 is universal: Is the binding of all thermotropic lig-
uid crystals dominated by van der Waals forces, or are
there systems where the thermal-Casimir and/or exponen-
tial forces also contribute, or even dominate? Very re-
cently, layer-by-layer surface freezing measurements of
the first-order smectic-A to smectic-B transition made us-
ing heat capacity techniques have shown that the homol-
ogous liquid crystal 40.8 is also dominated by van der
Waals forces [9]. In this Letter, we report the results of
layer-by-layer surface freezing measurements for four lig-
uid crystals [10], 90.4, 40.7, 70.7, and 14S5.
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To determine the distance dependence of the inter-
molecular pair potential from the measured layer-by-layer
surface freezing data it is very convenient to use the effec-
tive interface potential formalism [11]. The effective in-
terface potential is given by the sum of two terms: (1) the
conversion energy term A-AT, which is proportional to
the temperature difference from the transition temperature
AT = T — T, and to the thickness of the surface frozen
layer /; and (2) the interfacial energy term Ay[1 — f(1)],
where the interfacial energy correction Ay f(I) is obtained
by integrating the pair potential over the system [2,11].
For the two simplest cases, long-range power-law forces,
and short-range exponential forces, the respective effec-
tive interface potentials are given by

Voow(l, AT) = AIAT + Ay(1 — AI'™"), (1)

Vep(l, AT) = A'IAT + Ay(1 — Xe ¢).  (2)

All conventional surface freezing theories [12] predict
these same two functional forms. Here A and A’ are
constants specified by the chemical potential difference,
and Ay = yi1y-7Y12-7y2y is the difference in interfacial
energy.

The relationship between ! and AT is obtained by
minimizing the effective interface potential [11]. For
power-law forces, minimization yields AT(l) = al™"
and the theoretical predictions are very explicit: (a)
For nonretarded long-range van der Waals forces, the
measured n must be consistent with n = 3; (b) for
retarded van der Waals forces, the measured n must
be consistent with n = 4; and (c¢) for thermal-Casimir
forces, the measured n must be consistent with n = 2.
For short-range exponential forces, minimization yields
AT(l) = Bexp(—1/£), and the theoretical predictions
about the allowed values of ¢ are not as specific, but the
characteristic range of the force should be about one layer.

The experimental apparatus has been described in de-
tail previously [6,7]. It consists of a temperature-regulated
freely suspended liquid crystal film oven mounted in a
chamber filled with 300 torr of N,. Because the tilted lig-
uid crystal phases are birefringent, the monolayer freez-
ing transitions could be observed optically through crossed
polarizers. Video images of uniform thickness 7 mm di-
ameter films of each liquid crystal were recorded ver-
sus the oven temperature. Typical cooling rates were 5—
10 mK/min. We analyzed the video images to determine
the temperature when each transition first appeared. The
surface freezing transitions in all four liquid crystals ap-
peared both on heating and on cooling, and were hysteric
as expected for first-order surface freezing transitions. A
careful study of 90.4 showed that an undercooling of about
40 mK was required to produce each surface frozen layer
[7].

For the four liquid crystals that we studied, the frozen
surface phases were identified optically, based on the
observed textures, as tilted hexatic smectic-/ or smectic-
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F phases on a smectic-A interior [7]. Because these
surface phases are not in the bulk phase diagrams of these
liquid crystals, all of the surface freezing transitions that
we studied correspond technically to incomplete wetting:
For a semi-infinite system, the surface-stabilized phase
would always have a finite, albeit very large, thickness.
For example, although we observed 983 layer-by-layer
surface freezing transitions for a 983 layer thick 40.7 film
corresponding to the surface freezing of the entire film, for
a much thicker film there would only be a finite number
of layer-by-layer surface freezing transitions on each free
surface.

To determine the form of the intermolecular pair poten-
tial in the four liquid crystals, we fit the first ten surface
freezing transitions in L ~ 64 layer thick films. Films in
this thickness range could be precisely selected by their
distinctive blue color. The fits and the best-fit parame-
ters from the power-law and exponential force models are
shown in Fig. 1 and Table I, respectively. From Fig. 1 and
Table I, we can conclude the following. (a) The 90.4 data
set is only consistent with van der Waals forces and demon-
strates that some liquid crystals are dominated by van der
Waals interactions with no apparent contributions from ex-
ponential for thermal-Casimir forces. (b) The 70.7 data
set is only consistent with exponential forces; the power-
law fit gives an unphysical exponent n = 6. (c) The 40.7
data set is equally consistent with thermal-Casimir forces
or with exponential forces. Thus 40.7 may be a liquid
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FIG. 1. The measured number of frozen surface layers versus
temperature. For visual clarity, the successive liquid crystals
have been shifted up by +1 layers and the 40.7 data set has
been shifted by +21°C. The solid lines indicate the results
of the fits to the long-range power-law force model, and the
dashed lines indicate the results for the short-range exponential
force model. Inset: The simple effective interface potential
V (I, AT) produced by the sum of the conversion energy term
AIAT and the interfacial energy correction —A+vyf(l); the
constant offset due to Ay is not shown.
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TABLE 1.

The best-fit parameters for the long-range power-law and the short-range exponential force models.

The power-law

fits used T(I) = T, + al™”. The exponential force fits used T(I) = T! + Be~"/¢. For each liquid crystal, N different films
were measured. The forces that fit the data for each liquid crystal are indicated by van der Waals (v), thermal-Casimir (c), and

exponential (e).

LC N Allowed Power law Exponential

Forces T. a n T! B £
90.4 6 v 69.331 6.78 £ 0.05 2.69 = 0.03 69.397 39.1 £ 0.5 0.56 * 0.01
40.7 5 c,e 49.107 1.71 = 0.01 1.98 = 0.11 49.160 50 =038 0.86 = 0.07
70.7 3 e 69.188 9.40 = 0.05 58 £0.8 69.191 (5.9 = 2.3) X 10? 0.25 = 0.02
1485 4 v,e 67.621 8.11 = 0.16 3.12 = 0.06 67.687 50.1 = 3.1 0.54 = 0.02

crystal dominated by smectic-thermal-Casimir forces. (d)
The 14S5 data set is equally consistent with van der
Waals or exponential forces. The quality of our force
determination is limited by the quality of the surface
freezing data. Although the power-law and exponential
force model appear to fit all four liquid crystals equally
well, the errors on the 90.4 data are much smaller than the
dots [6,7], and consequently the exponential force model
is not consistent with the 90.4 data. We do not know
why 90.4 is more reproducible than the other three liquid
crystals.

Beyond about the first ten surface freezing transitions,
the subsequent surface freezing transitions proceed more
slowly than the predicted divergence. Of course, a true
divergence is predicted only in the thermodynamic limit.
The observed slowdown depends on the film thickness.
These finite-size slowdown effects, first noticed in 90.4
[6], have been studied versus film thickness for 40.7 and
70.7 films with thicknesses ranging from 17 to ~1000
layers [7]. In all three systems, the surface freezing
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FIG. 2. The finite-size slowdown in the number of frozen
surface layers versus temperature for L = 17, 27, 41, 64, 141,
207, 337, 477, and 983 layer thick 40.7 films. The solid line
through each data set (indistinguishable from the data) is the
best fit to the complete effective interface potential. The dashed
line indicates the predicted divergence which would occur
for V/(I;L) = 0. Inset: The corresponding film thickness
dependence of V’/(/;L) is shown for L = 60, 120, 180, 240,
and 300 layers. Note that V/([; L) is linear in / near the surface.

transitions displayed a systematic and progressive devia-
tion from the initial power-law or logarithmic divergence.
Figure 2 shows the observed slowdown versus film thick-
ness for 40.7. The surface freezing transitions in thicker
films proceed more quickly with temperature than the
transitions in thinner films.

The data set shown in Fig. 2 was fit to a phenomeno-
logical finite-size model which assumed the same short-
range exponential force parameters which fit the data
for the first ten layers and which predicted the sur-
face freezing temperature for the /th layer to be T(I) =
T. + Bexp(—1/&) — B'L/(L — €l). Although no ex-
plicit theory exists for finite-size effects in freely sus-
pended smectic liquid crystal films, our model corre-
sponds to a shift in the surface freezing temperature of the
Ith layer 8T(L,!) « 1/(L — &l), which is inversely pro-
portional to the thickness of the intermediate “‘unfrozen”
region of the film. Although our model is completely
phenomenological, we find that a single set of parame-
ters fits all of the measured 40.7 films with 8’ = 0.3 and
e = 1.1. All of the 70.7 data sets were also fitted with
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FIG. 3. The evolution of the model-independent complete
effective interface potential for a 100 layer thick 40.7 film
versus temperature (AT =T — T.). The solid dot at the
minimum of each curve indicates the number of surface frozen
layers. The short-dashed line indicates the interfacial energy
correction term —A+vyf(l) and the long-dashed line indicates
the finite-size correction term V'(l;L). Note that for small [,
V/(l; L) simply renormalizes the temperature, but for large [ it
produces the finite-size slowdown.
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this model with B8/ = 0.3 and £ = 1.2. The analogous
finite-size model with a power-law form for the interfacial
energy correction also fits the 90.4 data [7].

The superb agreement between our phenomenological
finite-size model and the data allowed us to construct
the complete effective interface potential V.(I,AT;L)
V(l,AT) + V'(I'; L), by adding the finite-size correction,
V/(I;L) = —(B'L/e)In(L — &l), to the interfacial energy
and conversion energy terms. Figure 3 shows the evo-
lution of V.(I, AT; L) versus temperature for a 100 layer
40.7 film. As AT — 0, the minimum of V. broadens and
the position of the interface between the surface frozen
phase and the unfrozen interior phase moves toward the
center of the film. The “interface-interface repulsion”
which slows down the transitions near the center of the
film is due to V/(I; L).

Figure 2 shows the thickness dependence of the finite-
size correction V/(I;L). For the first few transitions in
films with L > 30 layers, V/(l; L) is linear and this pro-
duces a simple shift 6 of the transition temperature so
that V.(I,AT;L) = V(I,AT + §). Although the results
shown in Fig. 2 were constructed using a specific model,
the complete effective interface potential is actually model
independent. We have used other parametrizations of the
finite-size correction and obtained indistinguishable re-
sults. In principle, of course, only the minimum of the
complete effective interface potential versus temperature
is determined by our measurements. However, in prac-
tice the calculated potentials were independent of our
parametrization of the finite-size correction once the stan-
dard forms for f(I) and AIAT are assumed.

To summarize, the four liquid crystals that we studied
provide evidence for all three types of interactions ex-
pected for liquid crystals: van der Waals, exponential, and
“thermal-Casimir” forces. This is the first report of data
consistent with smectic-thermal-Casimir forces associated
with the smectic layer fluctuations and the first report
of data consistent with exponential forces for smectic-to-
smectic transitions. The layer-by-layer surface freezing
of a few smectic layers at the isotropic-vapor interface
[13] is apparently also governed by exponential effective
forces since the measured surface freezing transitions fol-
low the characteristic logarithmic growth form. We also
constructed the model independent complete effective in-
terface potential and analyzed its finite-size dependence.
We found that the finite-size effects produce temperature
shifts inversely proportional to the size of the system. Our
measurements are the only experimental studies of the dif-
ferent possible distance dependences of the intermolecular
interactions in thermotropic smectic liquid crystals.
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