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Sheared Flow Stabilization of the m = 1 Kink Mode in Z Pinches
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The effect of a sheared axial flow on the m = 1 kink instability in Z pinches is studied numerically
by reducing the linearized magnetohydrodynamic equations to a one-dimensional displacement equation.
An equilibrium is used that is made marginally stable against the m = O sausage mode by tailoring its
pressure profile. The principal result reveals that a sheared axial flow stabilizes the kink mode when the
shear exceeds a threshold that is dependent on the location of the conducting wall. For the equilibria
studied here the maximum threshold shear (vé / kV,f\)) was about 0.1.

PACS numbers: 52.55.Ez, 52.35.Py, 52.65.Kj

The m = 1 kink instability is well known, both theoreti-
cally and experimentally, to plague Z-pinch plasmas [1,2].
(In this paper we refer to a Z pinch as having only axial
plasma current.) Certain notable exceptions occur, mainly
in Z pinches with a flow velocity, where the flow state is
observed to be stable [3,4]. We have been led to reexam-
ine the effects of flow on stability because of the profound
implications a stable, high-density Z pinch would have for
magnetic confinement thermonuclear fusion [5].

By tailoring the pressure profile of a static Z-pinch
equilibrium the m = 0 sausage mode can be stabilized,
but the equilibrium remains unstable to the internal kink
mode [6,7]. The introduction of an axial magnetic field
can stabilize the kink mode, but the field also limits the
axial plasma current (the Kruskal-Shafranov limit) [8,9].
The pinch must then compress the magnetic field as well
as the plasma. An approach that allows high plasma
density would be to stabilize the Z pinch without limiting
the plasma current.

The axial variation of the kink mode suggests that
a constant axial flow may eliminate the variation and
stabilize the mode. An infinitely long Z-pinch plasma
with a uniform axial velocity would kink at the same rate
as a static plasma since the kink mode would simply move
at the plasma velocity. However, if the plasma velocity
is nonuniform (sheared flow), the kink mode is forced
to be axially coherent and is found to be stabilized for
sufficient velocity shear. Since the kink mode can move
at the average plasma velocity, it is clear that the velocity
shear, and not the average velocity, affects the stability.
While a uniform flow may stabilize the kink mode in a
Z pinch of finite length by convecting the instability to
the end of the pinch before it can grow significantly, this
would require a super-Alfvénic flow velocity and will not
be considered here.

The equilibrium equation for the Z pinch is the radial
force balance, which is
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where By is the azimuthal magnetic field and p is the
plasma pressure. The presence of an axial flow does not
affect the equilibrium equation. Performing a functional
minimization (or energy principle), an equilibrium condi-
tion can be determined that stabilizes the m = 0 sausage
mode in the static Z pinch [6]:
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where T is the ratio of specific heats and 8 = 2uop/B?
is a local measure of the ratio of plasma pressure
to magnetic pressure. This condition must be satisfied
everywhere in the plasma for stability against the m = 0
mode.

The lack of axisymmetry of the kink mode prevents the
stability determination by analytical methods, like those
used for the sausage mode, and numerical techniques
must be used. The ideal MHD (magnetohydrodynamic)
equations are linearized. The displacement is assumed to
have the form £(r,0,z,t) = &£(r)exp(yt + im0 — ikz).
Here 7y is the eigenvalue, and it is, in general, mixed
complex [having an oscillatory component J(y) and a
growing component N(y)]; m and k are the azimuthal
mode number and axial wave number for the eigenmode
of interest. For finite length pinches, the axial wave
number is limited by the inverse of the pinch length.
The linearized MHD equations are combined to yield a
pair of first order eigenvalue differential equations for the
perturbed total pressure p* and the radial displacement
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A second order eigenvalue differential equation for the
radial displacement is obtained by combining Egs. (3) and
).
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where S and Q are functions of the equilibrium, the mode
numbers, the eigenvalue, and the radius. The eigenvalue
indicates the stability or instability (and oscillation fre-
quency or growth rate) for a particular eigenmode of an
equilibrium. This formulation is similar to previous work
for the static Z pinch [7,10]. However, here an equilib-
rium axial flow v,(r) has been included that modifies the
equations.

Since the plasma is surrounded by a rigid wall, the
displacement must vanish there, &, = 0. At the axis
the eigenvalue equation becomes singular. A boundary
condition can be determined at the axis by expanding
Eq. (15) in a power series about the axis to find
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at the axis. For the kink mode m = 1 this gives a
Neumann boundary condition
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The boundary value problem defined by Eq. (15) and
the two boundary conditions is solved using a shooting
method. A guess is made for the eigenvalue and the
differential equation is integrated out to the wall. The
eigenvalues for states that do not exhibit overstability
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behave like those of the Sturm-Liouville problem, and a
simple corrector scheme can be used [11]. If the solution
overshoots the boundary value, the eigenvalue is lowered,
and vice versa.

The equilibria that we studied in this paper are diffuse
pure Z pinches, which means that the plasma extends to a
rigid conducting wall (no vacuum interface) that is located
at rya and that the plasma current is axial (no axial
magnetic field). The equilibria studied are marginally
stable to the m = 0 mode as defined by the equality of
Eq. (2). In parametric form, the equilibria satisfy
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where a is the characteristic pinch radius and p° is the
plasma pressure on axis. The magnetic field is calculated
from the force balance. The plasma temperature is
assumed to be constant, so the shape of the density and
pressure profiles are identical. The equilibria have an
axial flow that is zero on the axis and has a constant shear,
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where « is the normalized flow shear. The flow shear is
normalized to kVX , where Vg is the nominal Alfvén speed,
which is defined by the maximum magnetic field and the
maximum plasma density (V4 = Bg/W).

For static equilibria (« = 0), the operators are Hermi-
tian, the stability equations are self-adjoint, and the eigen-
values are not mixed complex. If y? is greater than zero,
the mode is unstable and the growth rate is y. If y2 is less
than zero, the mode is stable and the oscillation frequency
is w = —ivy. The normalized growth rate is plotted in
Fig. 1 as a function of wall position. The placement of a
close-fitting wall is seen to have a stabilizing effect, but
when the wall is moved away to ryaj;/a > 4, the effect
vanishes.

The addition of an equilibrium velocity destroys the
Hermiticity property of the stability equations. Therefore,
the eigenvalues can be mixed complex [12].

_ [N(y) + iw if unstable,
Y= { iw if stable. 2D

We find that the kink mode is stabilized when the flow
shear exceeds a threshold value. The threshold shear
is dependent on the wall position. This is shown in
Fig. 2. At the threshold shear the kink mode is marginally
stable, at K = Kpreshola gives R(y) = 0, and at xk <
Kthreshold gives R(y) # 0. As the wall is moved away
from the plasma, the amount of flow shear required to
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FIG. 1. Wall position effect on the growth rate of the m = 1

mode for the static Z pinch. The effect vanishes for ry,;/a >
4.

stabilize the kink mode increases until 7wa1/a = 4 and
is constant beyond that point. This behavior is consistent
with the wall stabilization effect for the static Z pinch.
The eigenmodes for a marginally stable and an unstable
(static) equilibrium are shown in Fig. 3 for rya.1;/a = 3.
The introduction of flow shear localizes the eigenmode at
the axis.

We have verified that the flow does not drive the
sausage mode unstable. In fact, since the sausage mode
has an axial variation like the kink mode, a sheared
flow may stabilize the sausage mode, thus relaxing the
necessity for equilibrium profile control.

The solutions were found for varying values of the
normalized flow shear by discretizing the eigenvalue
equation, Eq. (15), using central finite differences on a
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FIG. 2. Threshold shear required to give marginal stability
against the m = 1 mode as a function of wall position. The
effect of the wall position still vanishes for ry,i1/a > 4.
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FIG. 3. Eigenmodes of the m = 1 mode for a marginally
stable (k = 0.036) and an unstable (static, k = 0) equilibrium
with ry.1/a = 3. The stable eigenmode is forced to the axis.

grid of 1000 cells. The number of grid cells was varied
over an order of magnitude and yielded the same results.

Our work shows that an equilibrium prescribed by
the m = 0 marginal stability condition can be stabilized
against the m = 1 kink mode by the introduction of a
sufficiently sheared axial flow. The stabilization effect
presented here may be related to the stabilization of bal-
looning modes in tokamak plasmas with sheared toroidal
velocities similar in magnitude to the values presented
here [13]. The sheared flow stabilization of the kink mode
in Z pinches has important implications for the flow-
through Z pinch. A flow-through Z pinch designed with
a sheared flow beyond the threshold value could make
a simple steady-state fusion device, such as described in
Ref. [5].
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